Quad 2-Input NAND Gate
 High-Performance Silicon-Gate CMOS
 MC74HC00A

The MC74HC00A is identical in pinout to the LS00. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance With the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 32 FETs or 8 Equivalent Gates
- -Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

Figure 1. Logic Diagram

Figure 2. Pinout (Top View)

\qquad

FUNCTION TABLE

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V_{CC}	DC Supply Voltage		-0.5 to +6.5	V
V_{1}	DC Input Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
V_{O}	DC Output Voltage		-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IN}	DC Input Current, per Pin		± 20	mA
IOUT	DC Output Current, Per Pin		± 25	mA
$I_{\text {CC }}$	DC Supply Current, V_{CC} and GND Pins		± 50	mA
$\mathrm{IIK}^{\text {I }}$	Input Clamp Current ($\mathrm{V}_{\text {IN }}<0$ or $\mathrm{V}_{\text {IN }}>\mathrm{V}_{\mathrm{CC}}$)		± 20	mA
IOK	Output Clamp Current ($\mathrm{V}_{\text {OUT }}<0$ or $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\mathrm{CC}}$)		± 20	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 1)	$\begin{array}{r} \text { SOIC-14 } \\ \text { QFN14 } \\ \text { TSSOP-14 } \end{array}$	$\begin{aligned} & 116 \\ & 130 \\ & 150 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $25^{\circ} \mathrm{C}$	$\begin{array}{r} \text { SOIC-14 } \\ \text { QFN14 } \\ \text { TSSOP-20 } \end{array}$	$\begin{gathered} 1077 \\ 962 \\ 833 \end{gathered}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V -0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	$\begin{gathered} >2000 \\ N / A \end{gathered}$	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Measured with minimum pad spacing on an FR4 board, using 76 mm -by- $114 \mathrm{~mm}, 2$-ounce copper trace no air flow per JESD51-7.
2. HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\text {IN }}$,	DC Input, Output Voltage (Referenced to GND) (Note 3)	0	$V_{C C}$	V
$\mathrm{~V}_{\mathrm{OUT}}$			-55	+125
$\mathrm{~T}_{\mathrm{A}}$	Operating Free-Air Temperature	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-0
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Rate	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	1000
		0	500	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
3. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{Cc}). Unused outputs must be left open.

MC74HC00A

DC CHARACTERISTICS

Symbol	Parameter	Condition	$\underset{\mathbf{v c}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|\left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A}\right. \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 2.10 \\ & 3.15 \\ & 4.20 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \mid l_{\text {out }} \end{array} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.90 \\ & 1.35 \\ & 1.80 \end{aligned}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & V_{\text {in }}=V_{I H} \text { or } V_{I L} \\ & \left\|l_{\text {lout }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	1.9 4.4 5.9	V
			$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|l_{\text {out }}\right\| 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
			$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	1.0	10	40	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC CHARACTERISTICS

Symbol	Parameter	$\underset{\mathbf{V C}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Maximum Propagation Delay, (A or B) to Y (Figures 3 and 4)	2.0	75	95	110	ns
		3.0	30	40	55	
		4.5	15	19	22	
		6.0	13	16	19	
$\begin{aligned} & \mathrm{t}_{\mathrm{T} \mathrm{LH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 3 and 4)	2.0	75	95	110	ns
		3.0	27	32	36	
		4.5	15	19	22	
		6.0	13	16	19	
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance		10	10	10	pF

CPD	Power Dissipation Capacitance (Per Buffer)*	Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$	pF
		22	

[^0]
MC74HC00A

${ }^{*} \mathrm{C}_{\mathrm{L}}$ Includes probe and jig capacitance

Test	Switch Position	$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
$\mathrm{t}_{\mathrm{PLL}} / \mathrm{t}_{\text {PHL }}$	Open	50 pF	$1 \mathrm{k} \Omega$
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	V_{CC}		
$\mathrm{t}_{\mathrm{PHZ}} / \mathrm{t}_{\text {PZH }}$	GND		

Figure 3. Test Circuit

Device	$\mathbf{V}_{\mathbf{I N}}, \mathbf{V}$	$\mathbf{V}_{\mathbf{m}}, \mathbf{V}$
MC74HC00A	V_{CC}	$50 \% \times \mathrm{V}_{\mathrm{CC}}$

Figure 4. Switching Waveforms

Figure 5. Expanded Logic Diagram (1/4 of the Device)

MC74HC00A

ORDERING INFORMATION

Device	Package	Marking	Shipping †
MC74HC00ADG	SOIC-14	HC00A	55 Units / Rail
MC74HC00ADR2G	SOIC-14	HC00A	$2500 /$ Tape \& Reel
MC74HC00ADTR2G	TSSOP-14	HC $00 A$	$2500 /$ Tape \& Reel
MC74HC00ADR2G-Q* $^{\text {MC74HC00ADTR2G-Q* }}$	SOIC-14	HC00A	$2500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS			INCHES	
	MIN	MAX	MIN	MAX	
	1.35	1.75	0.054	0.068	
A1	0.10	0.25	0.004	0.010	
A3	0.19	0.25	0.008	0.010	
b	0.35	0.49	0.014	0.019	
D	8.55	8.75	0.337	0.344	
E	3.80	4.00	0.150	0.157	
e	1.27 BSC	0.050	BSC		
H	5.80	6.20	0.228	0.244	
h	0.25	0.50	0.010	0.019	
L	0.40	1.25	0.016	0.049	
M	0	7°	7°	0°	

SOLDERING FOOTPRINT*

For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

[^1] special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE

STYLE 5
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-14 NB	

onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TSSOP-14 WB
CASE 948G
ISSUE C
DATE 17 FEB 2016

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
EXCEED $0.15(0.006)$ PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC	0.252	BSC	
M	00°	8°	0°	8°

GENERIC MARKING DIAGRAM*

SOLDERING FOOTPRINT

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

[^2]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: *Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.

[^1]: onsemi and OnSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

[^2]: onsemi and OnSemi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

