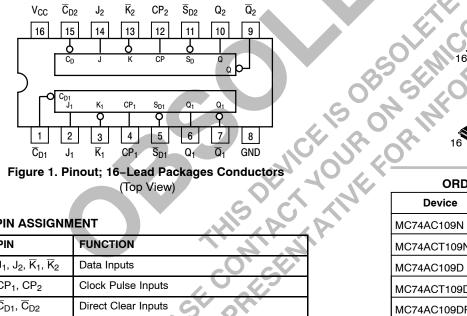
ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari


Dual JK Positive Edge-Triggered Flip-Flop

The MC74AC109/74ACT109 consists of two high-speed completely independent transition clocked $J\overline{K}$ flip-flops. The clocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D flip-flop (refer to MC74AC74/74ACT74 data sheet) by connecting the J and \overline{K} inputs together.

Asynchronous Inputs:

LOW input to \overline{S}_D (Set) sets Q to HIGH level LOW input to \overline{C}_D (Clear) sets Q to LOW level Clear and Set are independent of clock Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH

- Outputs Source/Sink 24 mA
- 'ACT109 Has TTL Compatible Inputs

PIN ASSIGNMENT

PIN	FUNCTION
$J_1, J_2, \overline{K}_1, \overline{K}_2$	Data Inputs
CP ₁ , CP ₂	Clock Pulse Inputs
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs
$\overline{S}_{D1}, \overline{S}_{D2}$	Direct Set Inputs
$\begin{array}{c} Q_1, Q_2, \overline{Q}_1, \ \overline{Q}_2 \end{array}$	Outputs

ON Semiconductor™

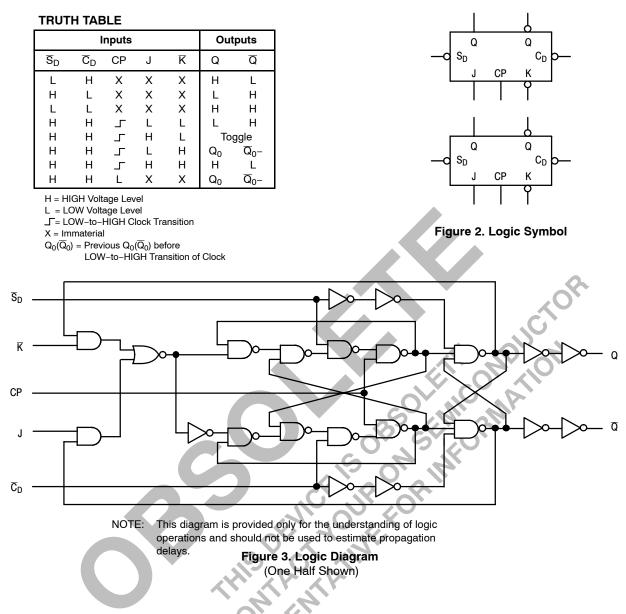
http://onsemi.com

N SUFFIX CASE 648

DIP-16

SO-16 **D SUFFIX** CASE 751B

TSSOP-16 DT SUFFIX CASE 948F


EIAJ-16 **M SUFFIX CASE 966**

ORDERING INFORMATION

Device	Package	Shipping
MC74AC109N	PDIP-16	25 Units/Rail
MC74ACT109N	PDIP-16	25 Units/Rail
MC74AC109D	SOIC-16	48 Units/Rail
MC74ACT109D	SOIC-16	48 Units/Rail
MC74AC109DR2	SOIC-16	2500 Tape & Reel
MC74ACT109DR2	SOIC-16	2500 Tape & Reel
MC74AC109DT	TSSOP-16	96 Units/Rail
MC74ACT109DT	TSSOP-16	96 Units/Rail
MC74AC109DTR2	TSSOP-16	2500 Tape & Reel
MC74ACT109DTR2	TSSOP-16	2500 Tape & Reel
MC74AC109M	EIAJ-16	50 Units/Rail
MC74ACT109M	EIAJ-16	50 Units/Rail
MC74AC109MEL	EIAJ-16	2000 Tape & Reel
MC74ACT109MEL	EIAJ-16	2000 Tape & Reel

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 6 of this data sheet.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	–0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±20	mA
I _{OUT}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Тур	Max	Unit
		'AC	2.0	5.0	6.0	
V _{CC}	Supply Voltage	'ACT	4.5	5.0	5.5	V
V _{IN} , V _{OUT}	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V _{CC}	V
		V _{CC} @ 3.0 V	-	150	-	
t _r , t _f	, t _f Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V _{CC} @ 4.5 V	-	40	-	ns/V
		V _{CC} @ 5.5 V	-	25	-	
	Input Rise and Fall Time (Note 2)	V _{CC} @ 4.5 V	-	10	-	
t _r , t _f	'ACT Devices except Schmitt Inputs	V _{CC} @ 5.5 V	-	8.0	-	ns/V
TJ	Junction Temperature (PDIP)		-	_	140	°C
T _A	Operating Ambient Temperature Range	-40	25	85	°C	
I _{OH}	Output Current – High			-	-24	mA
I _{OL}	Output Current – Low			-	24	mA

.

1. V_{IN} from 30% to 70% V_{CC} ; see individual Data Sheets for devices that differ from the typical input rise and fall times. 2. V_{IN} from 0.8 V to 2.0 V; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTIC	S
-------------------	---

			74	AC	74AC		8
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = −40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	I _{OUT} = -50 μA
	Output Voltage	3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -12 mA I_{OH} -24 mA -24 mA
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1	V	I _{OUT} = 50 μA
	Photo Ki	3.0 4.5 5.5	- -	0.36 0.36 0.36	0.44 0.44 0.44	V	*V _{IN} = V _{IL} or V _{IH} 12 mA I _{OL} 24 mA 24 mA
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, \text{ GND}$
I _{OLD}	†Minimum Dynamic	5.5	-	-	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-	-	-75	mA	V _{OHD} = 3.85 V Min
Icc	Maximum Quiescent Supply Current	5.5	-	4.0	40	μA	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

NOTE: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74	AC		
Symbol	Parameter	V _{CC} * (V)	T _A = +25°C C _L = 50 pF			T _A = -40°C to +85°C C _L = 50 pF		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	125 150	-	-	100 125	-	MHz	3–3
t _{PLH}	Propagation Delay CP_n to Q_n or \overline{Q}_n	3.3 5.0	4.0 2.5	-	13.5 10.0	3.5 2.0	16.0 10.5	ns	3–6
t _{PHL}	Propagation Delay CP_n to Q_n or \overline{Q}_n	3.3 5.0	3.0 2.0	-	14.0 10.0	3.0 1.5	14.5 10.5	ns	3–6
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.3 5.0	3.0 2.5	-	12.0 9.0	2.5 2.0	13.0 10.0	ns	3–6
t _{PHL}	Propagation Delay $\overline{C}D_n$ or \overline{S}_{Dn} to Q_n or \overline{Q}_n	3.3 5.0	3.0 2.0		12.0 9.5	3.0 2.0	13.5 10.5	ns	3–6
*Voltage Range 3.3 V is 3.3 V ±0.3 V. *Voltage Range 5.0 V is 5.0 V ±0.5 V.									
				7440		74			

AC OPERATING REQUIREMENTS

Symbol	Parameter	V _{CC} * (V)	$T_{A} = +25^{\circ}C$ $C_{L} = 50 \text{ pF}$ Typ Guaranteed		74AC $T_A = -40^{\circ}C$ to +85°C $C_L = 50 \text{ pF}$ d Minimum	Unit	Fig. No.
t _s	Set–up Time, HIGH or LOW J_n or \overline{K}_n to CP_n	3.3 5.0		6.5 4.5	7.5 5.0	ns	3–9
t _h	Hold Time, HIGH or LOW J_n or \overline{K}_n to CP_n	3.3 5.0		0 0.5	0 0.5	ns	3–9
t _w	Pulse Width $CP_{n \text{ or }}\overline{C}_{Dn}$ or \overline{S}_{Dn}	3.3 5.0		4.0 3.5	4.5 3.5	ns	3–6
t _{rec}	Recovery Time \overline{C}_{Dn} or \overline{S}_{Dn} to CP	3.3 5.0		0 0	0 0	ns	3–9
*Voltage Ran	ge 3.3 V is 3.3 V ±0.3 V. ge 5.0 V is 5.0 V ±0.5 V.						
DC CHARA	CTERISTICS				1		1

DC CHARACTERISTICS

			74ACT		74ACT		
Symbol	Parameter	V _{CC} (V)	T _A =	+25°C	T _A = –40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V_{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V_{OUT} = 0.1 V or V _{CC} – 0.1 V
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	l _{OUT} = -50 μA
		4.5 5.5	_	3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA

*All outputs loaded; thresholds on input associated with output under test.

†Maximum test duration 2.0 ms, one output loaded at a time.

DC CHARACTERISTICS (continued)

			744	СТ	74ACT		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions
			Тур	Guar	anteed Limits		
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	l _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$\label{eq:VIN} \begin{array}{c} {}^{*}V_{IN} = V_{IL} \text{ or } V_{IH} \\ 24 \text{ mA} \\ I_{OL} \\ 24 \text{ mA} \end{array}$
I _{IN}	Maximum Input Leakage Current	5.5	-	±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6	-	1.5	mA	$V_I = V_{CC} - 2.1 V$
I _{OLD}	†Minimum Dynamic	5.5	-	_	75	mA	V _{OLD} = 1.65 V Max
I _{OHD}	Output Current	5.5	-		-75	mA	V _{OHD} = 3.85 V Min
I _{CC}	Maximum Quiescent Supply Current	5.5	-	4.0	40	μΑ	V _{IN} = V _{CC} or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

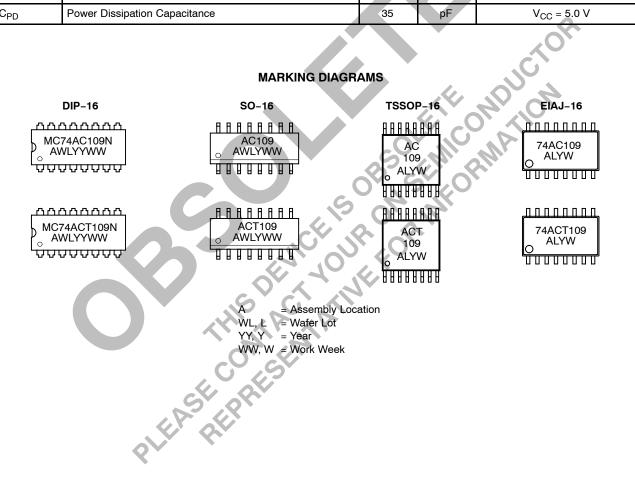
Symbol	bol Parameter		Т	74ACT A = +25° L = 50 p	C F	744 T _A = - to +8 C _L = 5	-40°C 85°C	Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	145	5-	-	125	-	MHz	3–3
t _{PLH}	Propagation Delay CP_n to Q_n or \overline{Q}_n	5.0	4.0	-	11.0	3.5	13.0	ns	3–6
t _{PHL}	Propagation Delay CP_n to Q_n or \overline{Q}_n	5.0	3.0	-	10.0	2.5	11.5	ns	3–6
t _{PLH}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	2.5	-	9.5	2.0	10.5	ns	3–6
t _{PHL}	Propagation Delay \overline{C}_{Dn} or \overline{S}_{Dn} to Q_n or \overline{Q}_n	5.0	2.5	-	10.0	2.0	11.5	ns	3–6

*Voltage Range 5.0 V is 5.0 V ±0.5 V.

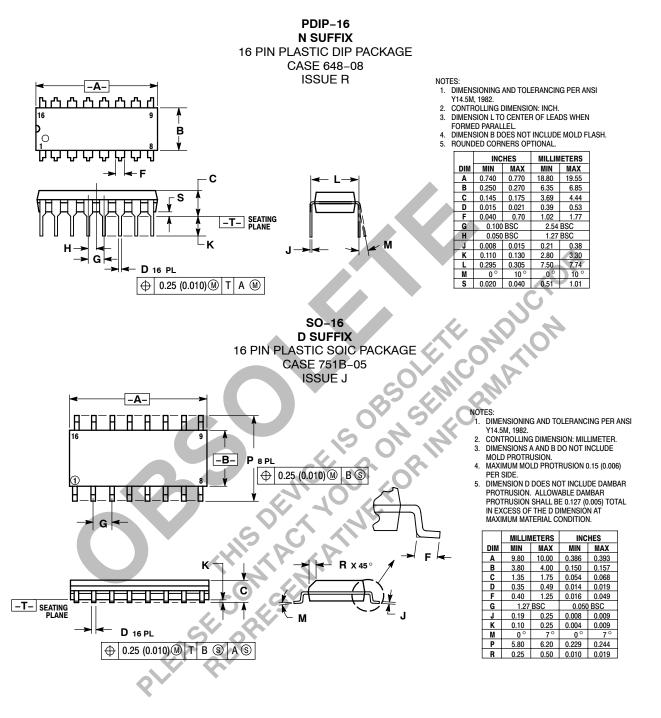
AC OPERATING REQUIREMENTS

	Q *			74ACT	74ACT		
Symbol	Parameter	Parameter V_{CC}^* $T_A = +25^{\circ}C$ (V) $C_L = 50 \text{ pF}$		$ \begin{array}{c} T_{A}=+25^{\circ}C \\ C_{L}=50 \ pF \end{array} \begin{array}{c} T_{A}=-40^{\circ}C \\ to +85^{\circ}C \\ C_{L}=50 \ pF \end{array} $		Unit	Fig. No.
			Тур	Guaranteed	d Minimum		
t _s	Set–up Time, HIGH or LOW J_n or \overline{K}_n to CP_n	5.0	-	2.0	2.5	ns	3–9
t _h	Hold Time, HIGH or LOW $J_n \text{ or } \overline{K}_n \text{ to } CP_n$	5.0	-	2.0	2.0	ns	3–9
t _w	Pulse Width CP _{n or}	5.0	-	5.0	6.0	ns	3–6

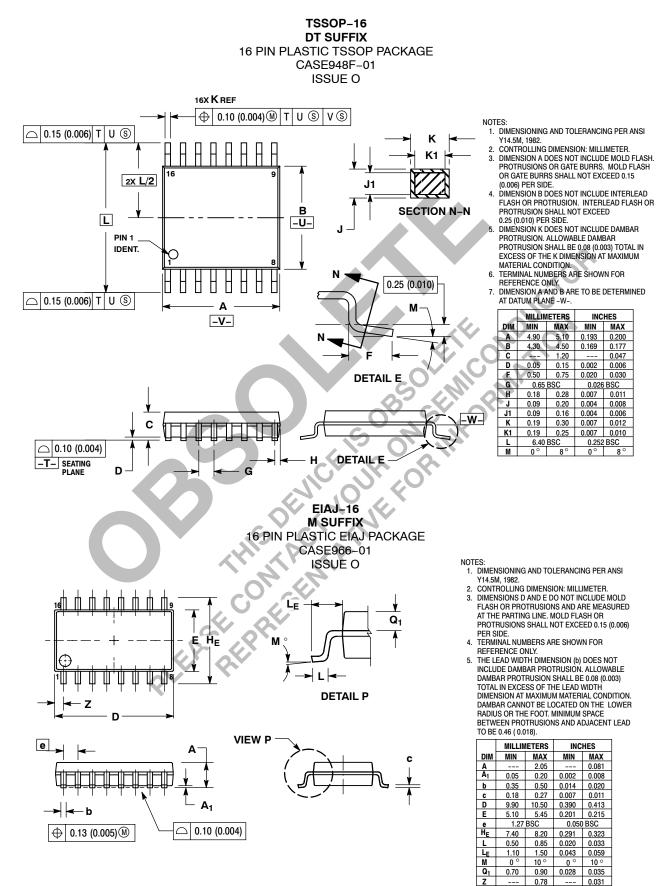
*Voltage Range 5.0 V is 5.0 V \pm 0.5 V.


AC OPERATING REQUIREMENTS (continued)

Symbol	Parameter	V _{cc} * (V)	74ACT		74ACT		Fig. No.
			T _A = +25°C C _L = 50 pF		T _A = −40°C to +85°C C _L = 50 pF	Unit	
			Тур	Guaranteed			
t _{rec}	Recovery TIme C _{Dn} or S _{Dn} to CP	5.0	_	0	0	ns	3–9


*Voltage Range 5.0 V is 5.0 V ±0.5 V.

CAPACITANCE


Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	35	pF	V _{CC} = 5.0 V

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees andising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolociated with such unintended or unauthorized use persons, and reasonable attorney fees andising ormanufacture of the part. SCILLC is an Equal Opportun

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative