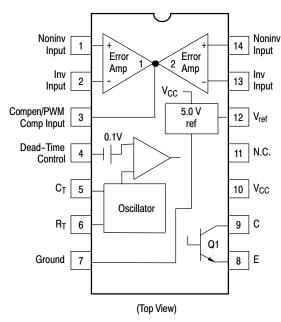
Fixed Frequency, PWM, Voltage Mode Single Ended Controllers

The MC34060A is a low cost fixed frequency, pulse width modulation control circuit designed primarily for single-ended SWITCHMODETM power supply control.

The MC34060A is specified over the commercial operating temperature range of 0° to +70°C, and the MC33060A is specified over an automotive temperature range of -40° to +85°C.

Features

- Complete Pulse Width Modulation Control Circuitry
- On-Chip Oscillator with Master or Slave Operation
- On-Chip Error Amplifiers
- On-Chip 5.0 V Reference, 1.5% Accuracy
- Adjustable Dead–Time Control
- Uncommitted Output Transistor Rated to 200 mA Source or Sink
- Undervoltage Lockout
- These are Pb-Free and Halide-Free Devices


ON Semiconductor®

http://onsemi.com

		IARKING IAGRAMS
14 56665 ⁶⁸		AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	PSUFFIX	<u> </u>
x A WL Y, YY WW G	= 3 or 4 = Assembly Locati = Wafer Lot = Year = Work Week = Pb-Free Packag	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

PIN CONNECTIONS

MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)

Rating		Value	Unit
Power Supply Voltage	V _{CC}	42	V
Collector Output Voltage	V _C	42	V
Collector Output Current (Note 3)	Ι _C	500	mA
Amplifier Input Voltage Range	V _{in}	-0.3 to +42	V
Power Dissipation @ $T_A \le 45^{\circ}C$	PD	1000	mW
Operating Junction Temperature	TJ	125	°C
Storage Temperature Range	T _{stg}	–55 to +125	°C
Operating Ambient Temperature Range For MC34060A For MC33060A	T _A	0 to +70 -40 to +85	°C
ESD Capability Machine Model Human Body Model		200 2.0	V kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

This device series contains ESD protection and exceeds the following tests: Pins 1– 14: Human Body Model 2000 V per JEDEC Standard JESD22–A114E. Machine Model Method 200 V per JEDEC Standard JESD22–A115–A.

2. This device contains Latch–Up protection and exceeds \pm 100 mA per JEDEC Standard JESD78.

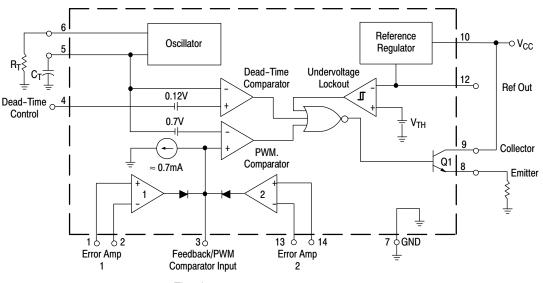
THERMAL CHARACTERISTICS

Characteristics	Symbol	P Suffix Package	D Suffix Package	Unit
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	80	120	°C/W
Derating Ambient Temperature	T _A	45	45	°C

RECOMMENDED OPERATING CONDITIONS

Condition/Value	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	V _{CC}	7.0	15	40	V
Collector Output Voltage	V _C	-	30	40	V
Collector Output Current	lc	-	-	200	mA
Amplifier Input Voltage	V _{in}	-0.3	-	V _{CC} –2	V
Current Into Feedback Terminal	I _{fb}	-	-	0.3	mA
Reference Output Current	I _{ref}	-	-	10	mA
Timing Resistor	R _T	1.8	47	500	kΩ
Timing Capacitor	C _T	0.00047	0.001	10	μF
Oscillator Frequency	f _{osc}	1.0	25	200	kHz
PWM Input Voltage (Pins 3 and 4)	-	-0.3	-	5.3	V

3. Maximum thermal limits must be observed.


ELECTRICAL CHARACTERISTICS (V_{CC} = 15 V, C_T = 0.01 μ F, R_T = 12 k Ω , unless otherwise noted. For typical values T_A = 25°C, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
REFERENCE SECTION					
Reference Voltage (I _O = 1.0 mA, T _A 25°C) $T_A = T_{low}$ to $T_{high} - MC34060A$ - MC33060A	V _{ref}	4.925 4.9 4.85	5.0 - -	5.075 5.1 5.1	V
Line Regulation (V _{CC} = 7.0 V to 40 V, I_O = 10 mA)	Reg _{line}	-	2.0	25	mV
Load Regulation ($I_0 = 1.0$ mA to 10 mA)	Reg _{load}	-	2.0	15	mV
Short Circuit Output Current (V _{ref} = 0 V)	I _{SC}	15	35	75	mA
OUTPUT SECTION	-				-
Collector Off–State Current (V _{CC} = 40 V, V _{CE} = 40 V)	I _{C(off)}	-	2.0	100	μA
Emitter Off–State Current (V _{CC} = 40 V, V _{CE} = 40 V, V _E = 0 V)	I _{E(off})	-	_	-100	μA
Collector-Emitter Saturation Voltage (Note 4) Common-Emitter ($V_E = 0 V$, $I_C = 200 mA$) Emitter-Follower ($V_C = 15 V$, $I_E = -200 mA$)	V _{sat(C)} V _{sat(E)}	-	1.1 1.5	1.5 2.5	V
Output Voltage Rise Time (T _A = 25°C) Common–Emitter (See Figure 12) Emitter–Follower (See Figure 13)	t _r		100 100	200 200	ns
Output Voltage Fall Time (T _A = 25°C) Common–Emitter (See Figure 12) Emitter–Follower (See Figure 13)	t _r		40 40	100 100	ns
ERROR AMPLIFIER SECTION					
Input Offset Voltage (V _{O[Pin 3]} = 2.5 V)	V _{IO}	-	2.0	10	mV
Input Offset Current (V _{C[Pin 3]} = 2.5 V)	I _{IO}	-	5.0	250	nA
Input Bias Current (V _{O[Pin 3]} = 2.5 V)	I _{IB}	-	-0.1	-2.0	μA
Input Common Mode Voltage Range (V _{CC} = 40 V)	V _{ICR}	0 to V _{CC} –2.0	-	-	V
Inverting Input Voltage Range	V _{IR(INV)}	–0.3 to V _{CC} –2.0	-	_	V
Open–Loop Voltage Gain (ΔV_O = 3.0 V, V_O = 0.5 V to 3.5 V, R_L = 2.0 k Ω)	A _{VOL}	70	95	-	dB
Unity–Gain Crossover Frequency ($V_O = 0.5 \text{ V to } 3.5 \text{ V}, \text{ R}_L = 2.0 \text{ k}\Omega$)	f _c	-	600	-	kHz
Phase Margin at Unity–Gain (V _O = 0.5 V to 3.5 V, R _L = 2.0 kΩ)	φ _m	-	65	-	deg.
Common Mode Rejection Ratio (V _{CC} = 40 V, V _{in} = 0 V to 38 V))	CMRR	65	90	_	dB
Power Supply Rejection Ratio $(\Delta V_{CC} = 33 \text{ V}, V_O = 2.5 \text{ V}, R_L = 2.0 \text{ k}\Omega)$	PSRR	-	100	_	dB
Output Sink Current (V _{O[Pin 3]} = 0.7 V)	I _O -	0.3	0.7	_	mA
Output Source Current (V _{O[Pin 3]} = 3.5 V)	I _O +	-2.0	-4.0	_	mA

4. Low duty cycle techniques are used during test to maintain junction temperature as close to ambient temperatures as possible. T_{low} = -40°C for MC33060A = 0°C for MC34060A T_{high} = +85°C for MC33060A = +70°C for MC34060A

ELECTRICAL CHARACTERISTICS (continued) (V_{CC} = 15 V, C_T = 0.01 µF, R_T = 12 k Ω , unless otherwise noted.
For typical values $T_A = 25^{\circ}C$, for min/max values T_A is the operating ambient temperature range that applies, unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Uni
PWM COMPARATOR SECTION (Test circuit Figure 11)					
Input Threshold Voltage (Zero Duty Cycle)	V _{TH}	-	3.5	4.5	V
Input Sink Current (V _[Pin 3] = 0.7 V)	lı I	0.3	0.7	-	mA
DEAD-TIME CONTROL SECTION (Test circuit Figure 11)					
Input Bias Current (Pin 4) (V _{in} = 0 V to 5.25 V)	I _{IB(DT)}	-	-1.0	-10	μΑ
$\begin{array}{l} \mbox{Maximum Output Duty Cycle} \\ (V_{in} = 0 \ V, \ C_T = 0.01 \ \mu\text{F}, \ R_T = 12 \ k\Omega) \\ (V_{in} = 0 \ V, \ C_T = 0.001 \ \mu\text{F}, \ R_T = 47 \ k\Omega) \end{array}$	DC _{max}	90 -	96 92	100 -	%
Input Threshold Voltage (Pin 4) (Zero Duty Cycle) (Maximum Duty Cycle)	V _{TH}	- 0	2.8 -	3.3 -	V
OSCILLATOR SECTION					
$\begin{array}{l} \mbox{Frequency} \\ (C_T = 0.01 \ \mu\mbox{F}, \ R_T = 12 \ k\Omega, \ T_A = 25^\circ\mbox{C}) \\ T_A = T_{low} \ to \ T_{high} - MC34060A \\ - \ MC33060A \\ (C_T = 0.001 \ \mu\mbox{F}, \ R_T = 47 \ k\Omega) \end{array}$	f _{osc}	9.7 9.5 9.0	10.5 - - 25	11.3 11.5 11.5 -	kHz
Standard Deviation of Frequency* $(C_T = 0.001 \ \mu\text{F}, R_T = 47 \ \text{k}\Omega)$	of _{osc}	-	1.5	-	%
Frequency Change with Voltage (V _{CC} = 7.0 V to 40 V)	$\Delta f_{osc}(\Delta V)$	-	0.5	2.0	%
Frequency Change with Temperature $(\Delta T_A = T_{low} \text{ to } T_{high})$ $(C_T = 0.01 \ \mu\text{F}, R_T = 12 \ \text{k}\Omega)$	$\Delta f_{osc}(\Delta T)$	-	4.0		%
UNDERVOLTAGE LOCKOUT SECTION	•		•		
Turn-On Threshold (V _{CC} increasing, I_{ref} = 1.0 mA)	V _{th}	4.0	4.7	5.5	V
Hysteresis	V _H	50	150	300	m∖
TOTAL DEVICE					
Standby Supply Current (Pin 6 at V_{ref} , all other inputs and outputs open) ($V_{CC} = 15 V$) ($V_{CC} = 40 V$)	Icc	-	5.5 7.0	10 15	mA
Average Supply Current ($V_{[Pin 4]} = 2.0 V, C_T = 0.001 \mu F, R_T = 47 k\Omega$). See Figure 11.	١ _S	-	7.0	-	m/

This device contains 46 active transistors.

Figure 1. Block Diagram

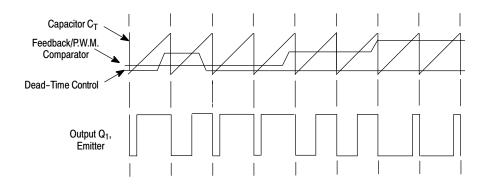
Description

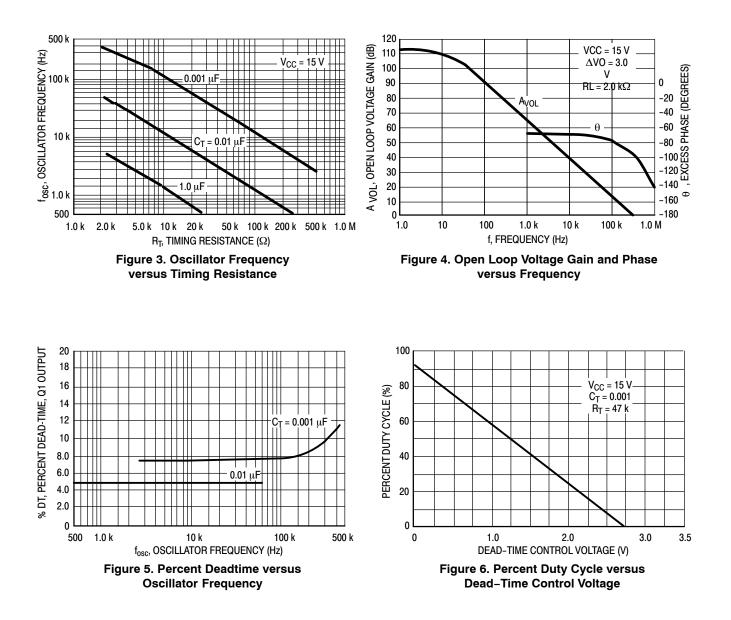
The MC34060A is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply (see Figure 1). An internal-linear sawtooth oscillator is frequency-programmable by two external components, R_T and C_T . The approximate oscillator frequency is determined by:

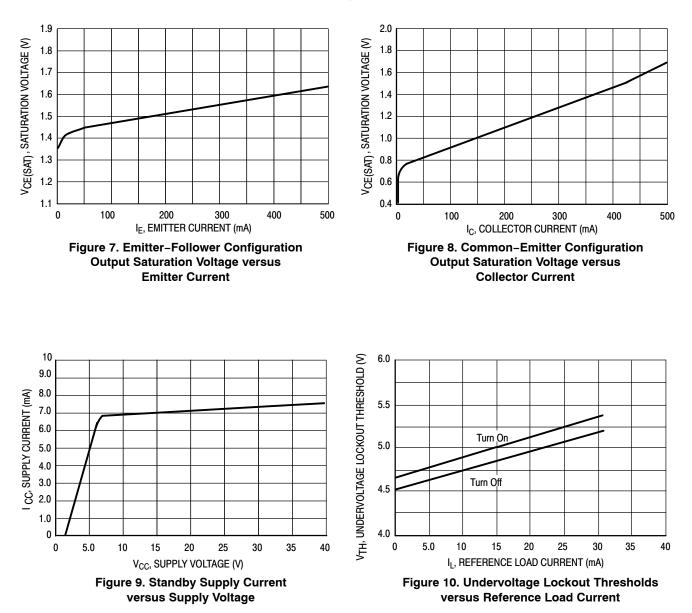
$$f_{osc} \cong -\frac{1.2}{R_T \bullet C_T}$$

For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_T to either of two control signals. The output is enabled only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control–signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure 2.)




Figure 2. Timing Diagram


APPLICATIONS INFORMATION

The control signals are external inputs that can be fed into the dead-time control, the error amplifier inputs, or the feed-back input. The dead-time control comparator has an effective 120 mV input offset which limits the minimum output dead time to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle of 96%. Additional dead time may be imposed on the output by setting the dead time-control input to a fixed voltage, ranging between 0 V to 3.3 V.

The pulse width modulator comparator provides a means for the error amplifiers to adjust the output pulse width from the maximum percent on-time, established by the dead time control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V. Both error amplifiers have a common mode input range from -0.3 V to (V_{CC} -2.0 V), and may be used to sense power supply output voltage and current. The error–amplifier outputs are active high and are ORed together at the noninverting input of the pulse–width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

The MC34060A has an internal 5.0 V reference capable of sourcing up to 10 mA of load currents for external bias circuits. The reference has an internal accuracy of $\pm 5\%$ with a typical thermal drift of less than 50 mV over an operating temperature range of 0° to +70°C.

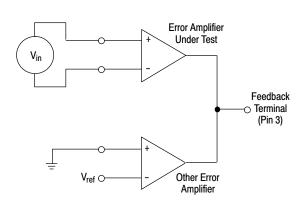


Figure 11. Error Amplifier Characteristics

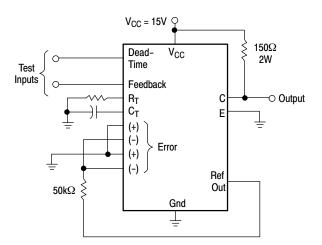
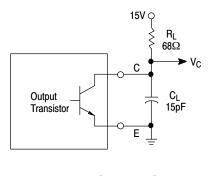



Figure 12. Deadtime and Feedback Control

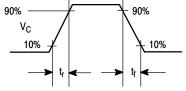
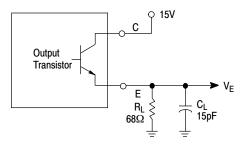



Figure 13. Common–Emitter Configuration and Waveform

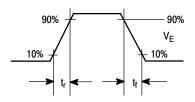


Figure 14. Emitter–Follower Configuration and Waveform

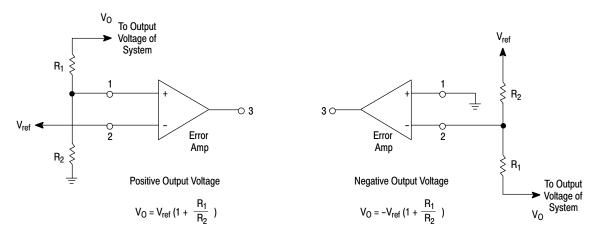


Figure 15. Error Amplifier Sensing Techniques

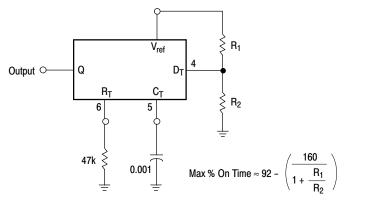


Figure 16. Deadtime Control Circuit

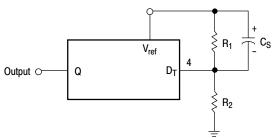


Figure 17. Soft-Start Circuit

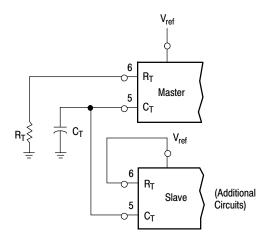
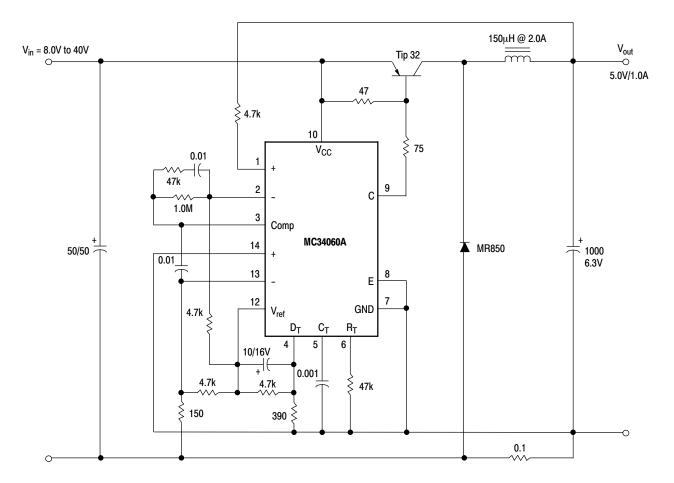
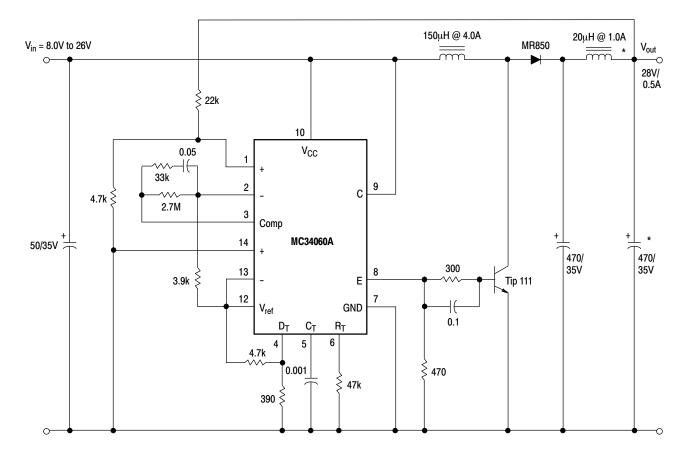
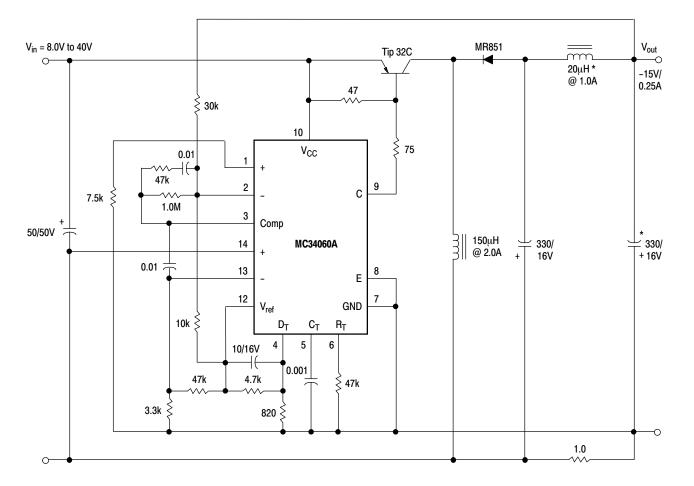




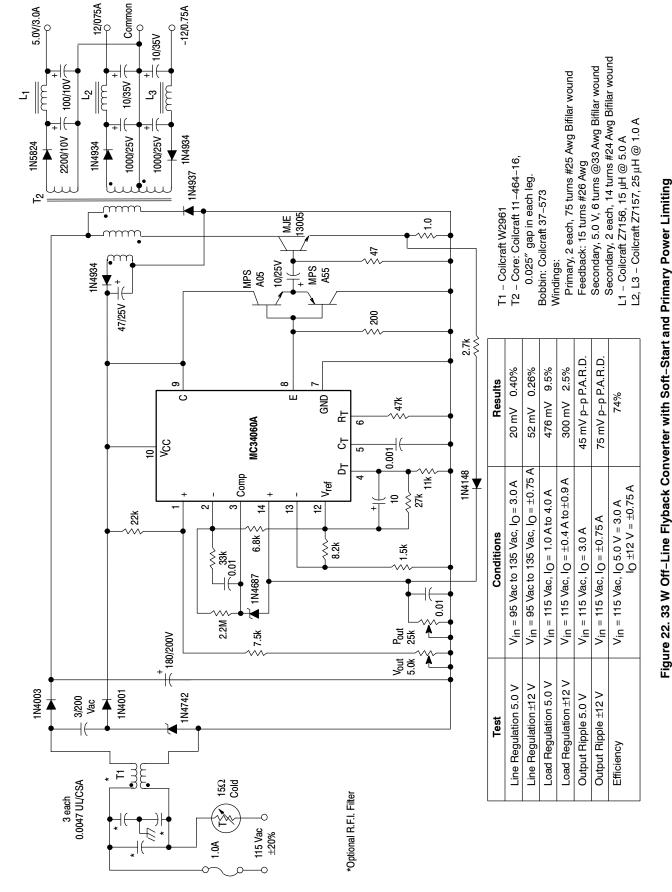
Figure 18. Slaving Two or More Control Circuits

Test	Conditions Result		
Line Regulation	V_{in} = 8.0 V to 40 V, I_O = 1.0 A	25 mV 0.5%	
Load Regulation	V_{in} = 12 V, I_{O} = 1.0 mA to 1.0 A	3.0 mV 0.06%	
Output Ripple	V _{in} = 12 V, I _O = 1.0 A	75 mV p-p P.A.R.D.	
Short Circuit Current	V_{in} = 12 V, R_L = 0.1 Ω	1.6 A	
Efficiency	V _{in} = 12 V, I _O = 1.0 A	73%	


Figure 19. Step–Down Converter with Soft–Start and Output Current Limiting

Test	Conditions Results	
Line Regulation	V_{in} = 8.0 V to 26 V, I_{O} = 0.5 A	40 mV 0.14%
Load Regulation	V_{in} = 12 V, I_{O} = 1.0 mA to 0.5 A	5.0 mV 0.18%
Output Ripple	V _{in} = 12 V, I _O = 0.5 A	24 mV p-p P.A.R.D.
Efficiency	V _{in} = 12 V, I _O = 0.5 A	75%

*Optional circuit to minimize output ripple


Figure 20. Step-Up Converter

Test	Conditions	Results	
Line Regulation	V_{in} = 8.0 V to 40 V, I_{O} = 250 mA	52 mV 0.35%	
Load Regulation	V_{in} = 12 V, I_O = 1.0 to 250 mA	47 mV 0.32%	
Output Ripple	V _{in} = 12 V, I _O = 250 mA	10 mV p-p P.A.R.D.	
Short Circuit Current	V_{in} = 12 V, R_L = 0.1 Ω	330 mA	
Efficiency	V _{in} = 12 V, I _O = 250 mA	86%	

*Optional circuit to minimize output ripple

Figure 21. Step–Up/Down Voltage Inverting Converter with Soft–Start and Current Limiting

ORDERING INFORMATION

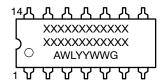
Device	Operating Temperature Range	Package	Shipping [†]
MC34060ADG		SOIC-14 (Pb-Free)	55 Units / Rail
MC34060ADR2G	$T_A = 0^\circ$ to +70°C	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC34060APG		PDIP-14 (Pb-Free)	25 Units / Rail
MC33060ADG		SOIC-14 (Pb-Free)	55 Units / Rail
MC33060ADR2G	$T_A = -40^\circ$ to +85°C	SOIC-14 (Pb-Free)	2500 / Tape & Reel
MC33060APG]	PDIP-14 (Pb-Free)	25 Units / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

STYLES ON PAGE 2

ON Semiconductor



DATE 22 APR 2015

- NOTES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
 DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT DE VICE DA 10 INCH. NOT TO EXCEED 0.10 INCH. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
- 5. PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- 6.
- DIMENSION & BIS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CODNEPS) 7.
- 8. CORNERS).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP		1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100	BSC	2.54	BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
М		10°		10°

GENERIC **MARKING DIAGRAM***

XXXXX = Specific Device Code

- = Assembly Location
- WL = Wafer Lot
- YY = Year

А

G

- ww = Work Week
 - = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " .", may or may not be present.

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PDIP-14		PAGE 1 OF 2
ON Semiconductor and unarrest of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			

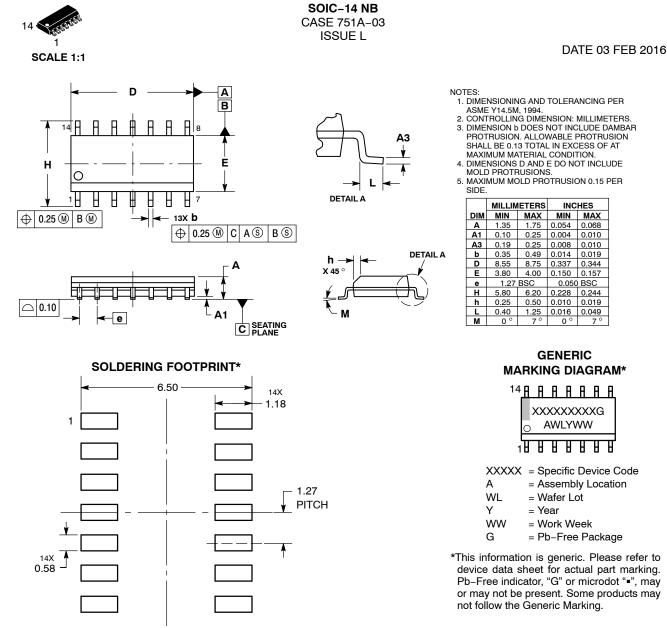
© Semiconductor Components Industries, LLC, 2019

PDIP-14 CASE 646-06 ISSUE S

DATE 22 APR 2015

STYLE 1: PIN 1. COLLECTOR 2. BASE 3. EMITTER 4. NO CONNECTION 5. EMITTER 6. BASE 7. COLLECTOR 8. COLLECTOR 9. BASE 10. EMITTER 11. NO CONNECTION 12. EMITTER 13. BASE 14. COLLECTOR	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. DRAIN 2. SOURCE 3. GATE 4. NO CONNECTION 5. GATE 6. SOURCE 7. DRAIN 8. DRAIN 9. SOURCE 10. GATE 11. NO CONNECTION 12. GATE 13. SOURCE 14. DRAIN
STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. NO CONNECTION 5. SOURCE 6. DRAIN 7. GATE 8. GATE 9. DRAIN 10. SOURCE 11. NO CONNECTION 12. SOURCE 13. DRAIN 14. GATE	STYLE 6: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 7: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 8: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 9: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE	STVLE 10: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 12: PIN 1. COMMON CATHODE 2. COMMON ANODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. COMMON ANODE 7. COMMON CATHODE 8. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE 14. ANODE/CATHODE

DOCUMENT NUMBER:	98ASB42428B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PDIP-14		PAGE 2 OF 2
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.			


DUSEU

0.068

0.019

0.344

0.244

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42565B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOIC-14 NB PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-14 CASE 751A-03 ISSUE L

DATE 03 FEB 2016

STYLE 1: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. NO CONNECTION 7. ANODE/CATHODE 8. ANODE/CATHODE 9. ANODE/CATHODE 10. NO CONNECTION 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 2: CANCELLED	STYLE 3: PIN 1. NO CONNECTION 2. ANODE 3. ANODE 4. NO CONNECTION 5. ANODE 6. NO CONNECTION 7. ANODE 8. ANODE 9. ANODE 10. NO CONNECTION 11. ANODE 12. ANODE 13. NO CONNECTION 14. COMMON CATHODE	STYLE 4: PIN 1. NO CONNECTION 2. CATHODE 3. CATHODE 4. NO CONNECTION 5. CATHODE 6. NO CONNECTION 7. CATHODE 8. CATHODE 10. NO CONNECTION 11. CATHODE 12. CATHODE 13. NO CONNECTION 14. COMMON ANODE
STYLE 5: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. NO CONNECTION 7. COMMON ANODE 8. COMMON CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. ANODE/CATHODE 12. ANODE/CATHODE 13. NO CONNECTION 14. COMMON ANODE	STYLE 6: PIN 1. CATHODE 2. CATHODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE 7. CATHODE 8. ANODE 9. ANODE 10. ANODE 11. ANODE 12. ANODE 13. ANODE 14. ANODE	STYLE 7: PIN 1. ANODE/CATHODE 2. COMMON ANODE 3. COMMON CATHODE 4. ANODE/CATHODE 5. ANODE/CATHODE 6. ANODE/CATHODE 7. ANODE/CATHODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. COMMON CATHODE 12. COMMON CATHODE 13. ANODE/CATHODE 14. ANODE/CATHODE	STYLE 8: PIN 1. COMMON CATHODE 2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE 6. ANODE/CATHODE 7. COMMON ANODE 8. COMMON ANODE 9. ANODE/CATHODE 10. ANODE/CATHODE 11. NO CONNECTION 12. ANODE/CATHODE 13. ANODE/CATHODE 14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-14 NB		PAGE 2 OF 2

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>