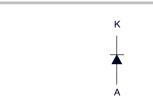
4 A, 600 V, STEALTH™ Diode

Description

The ISL9R460PF2 is a STEALTH diode optimized for low loss performance in high frequency hard switched applications. The STEALTH family exhibits low reverse recovery current (I_{RR}) and exceptionally soft recovery under typical operating conditions. This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low I_{RR} and short ta phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the STEALTH diode with an SMPS IGBT to provide the most efficient and highest power density design at lower cost.

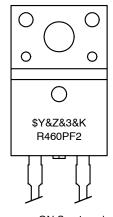
Features

- Ultrafast Recovery, t_{RR} = 17 ns (@ I_F = 4 A)
- Max Forward Voltage, $V_F = 2.4 \text{ V}$ (@ $T_C = 25^{\circ}\text{C}$)
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- This Device is Pb-Free and is RoHS Compliant


Applications

- SMPS
- Hard Switched PFC Boost Diode
- UPS Free Wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

ON Semiconductor®


www.onsemi.com

TO-220, 2-Lead CASE 221AS

MARKING DIAGRAM

\$Y &Z&3 = ON Semiconductor Logo= Data Code (Year & Week)

&K = Lot

R460PF2

= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

DEVICE MAXIMUM RATINGS $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Rating	Unit
V_{RRM}	Peak Repetitive Reverse Voltage	600	V
V_{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current (T _C = 108°C)	4	Α
I _{FRM}	Repetitive Peak Surge Current (20 kHz Square Wave)		Α
I _{FSM}	Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60 Hz)		Α
P _D	Power Dissipation		W
E _{AVL}	Avalanche Energy (0.5 A, 80 mH)	10	mJ
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 175	°C
T _L T _{PKG}	Maximum Temperature for Soldering Leads at 0.063in (1.6 mm) from Case for 10s Package Body for 10s, See Techbrief TB334	300 260	°C °C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

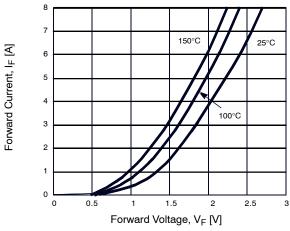
PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
ISL9R460PF2	R460PF2	TO-220F-2L	Tube	N/A	N/A	50

ELECTRICAL CHARACTERISTICS $T_C = 25^{\circ}C$ unless otherwise noted

Parameter	Conditions				Тур	Max	Unit		
OFF STATE CHARACTERISTICS									
I _R	Instantaneous Reverse Current	V _R = 600 V	T _C = 25°C	-	-	100	μΑ		
			T _C = 125°C	-	-	1.0	mA		
ON STATE CH	ARACTERISTICS								
V _F	Instantaneous Forward Voltage	I _F = 4 A	$I_F = 4 \text{ A}$ $T_C = 25^{\circ}\text{C}$	-	2.0	2.4	V		
			T _C = 125°C	-	1.6	2.0	٧		
DYNAMIC CHA	ARACTERISTICS								
CJ	Junction Capacitance	V _R = 10 V, I _F =	-	19	-	pF			
SWITCHING C	HARACTERISTICS				-				
t _{RR}	Reverse Recovery Time	$I_F = 1 A, di_F/dt$	$I_F = 1 \text{ A}, \text{ di}_F/\text{dt} = 100 \text{ A}/\mu\text{s}, \text{ V}_R = 30 \text{ V}$		17	20	ns		
		I _F = 4 A, dI _F /dt V	$I_F = 4 \text{ A}, dI_F/dt = 100 \text{ A}/\mu\text{s}, V_R = 30 \text{ V}$		19	22	ns		
t _{RR}	Reverse Recovery Time	I _F = 4 A,		-	17	-	ns		
I _{RR}	Reverse Recovery Current		di _F /dt = 200 A/μs, V _R = 390 V, T _C = 25°C		2.6	-	Α		
Q _{RR}	Reverse Recovered Charge	VH = 000 V, 1C = 20 0		-	22	-	nC		
t _{RR}	Reverse Recovery Time	I _F = 4 A, di _F /dt = 200 A/μs, V _R = 390 V, T _C = 125°C		-	77	-	ns		
S	Softness Factor (t _b /t _a)			-	4.2	-			
I _{RR}	Reverse Recovery Current			-	2.8	-	Α		
Q _{RR}	Reverse Recovered Charge			-	100	-	nC		

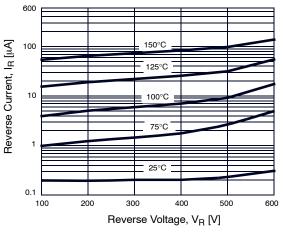
ELECTRICAL CHARACTERISTICS T_C = 25°C unless otherwise noted (continued)


Parameter	Conditions			Тур	Max	Unit		
WITCHING CHARACTERISTICS								
t _{RR}	Reverse Recovery Time	$I_F = 4 \text{ A},$ $di_F/dt = 400 \text{ A}/\mu\text{s}, \text{ V}_R = 390 \text{ V},$ $T_C = 125^{\circ}\text{C}$	-	54	-	ns		
S	Softness Factor (t _b /t _a)		-	3.5	-			
I _{RR}	Reverse Recovery Current		-	4.3	-	Α		
Q _{RR}	Reverse Recovered Charge			110	-	nC		
dI _M /dt	Maximum di/dt during t _b	1	-	500	-	A/μs		
IERMAL CH	ARACTERISTICS							
Rejc	Thermal Resistance Junction to Case		-	-	5.7	°C/W		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TO-220F

TYPICAL PERFORMANCE CURVES


 $T_C = 25^{\circ}C$ unless otherwise noted

Thermal Resistance Junction to Ambient

Reja

Figure 1. Forward Current vs Forward Voltage

°C/W

70

Figure 2. Reverse Current vs Reverse Voltage

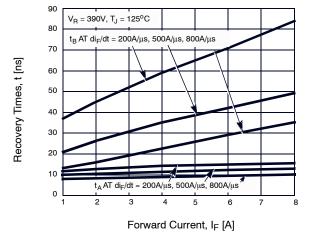
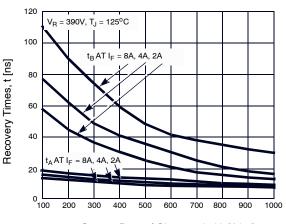
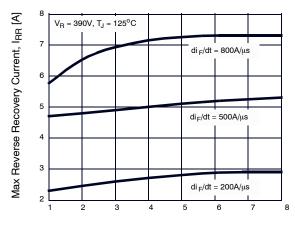



Figure 3. t_A and t_B Curves vs Forward Current



Current Rate of Change, di_F/dt [A/µs]

Figure 4. $t_{\mbox{\scriptsize A}}$ and $t_{\mbox{\scriptsize B}}$ Curves vs $di_{\mbox{\scriptsize F}}/dt$

TYPICAL PERFORMANCE CURVES (continued)

 $T_C = 25^{\circ}C$ unless otherwise noted

Forward Current, I_F [A]

Figure 5. Maximum Reverse Recovery Current vs Forward Current

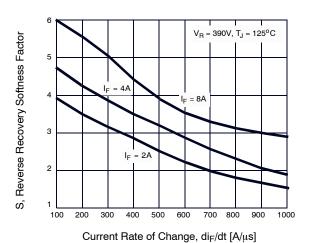


Figure 7. Reverse Recovery Softness vs di_F/dt

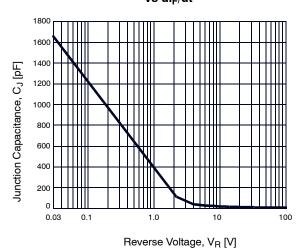
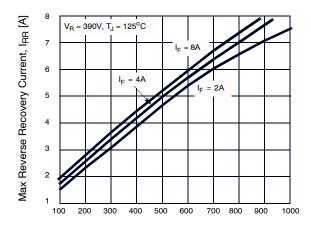
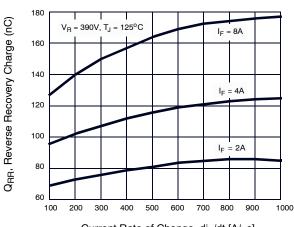




Figure 9. Junction Capacitance vs Reverse Voltage

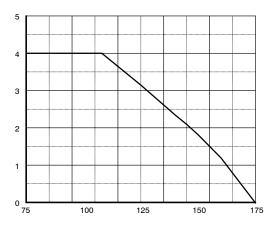

Current Rate of Change, di_F/dt [A/µs]

Figure 6. Maximum Reverse Recovery Current vs di_F/dt

Current Rate of Change, di_F/dt [A/µs]

Figure 8. Reverse Recovery Charge vs di_F/dt

Case Temperature, T_C [°C]

Figure 10. DC Current Derating Curve

Average Forward Current, I_{F(AV)} [A]

TYPICAL PERFORMANCE CURVES (continued)

 $T_C = 25^{\circ}C$ unless otherwise noted

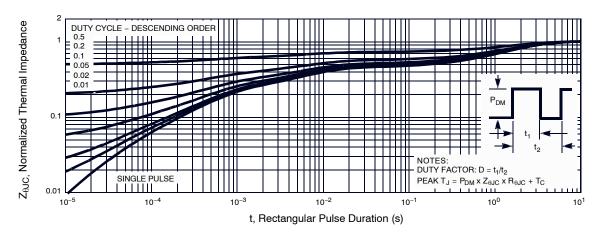


Figure 11. Normalized Maximum Transient Thermal Impedance

TEST CIRCUIT AND WAVEFORMS

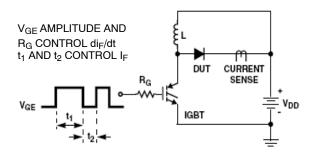


Figure 12. It_{RR} Test Circuit

 $\begin{array}{c|c} & dI_F \\ \hline I_F & dI \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline$

Figure 13. t_{RR} Waveforms and Definitions

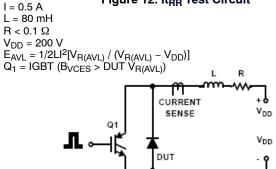
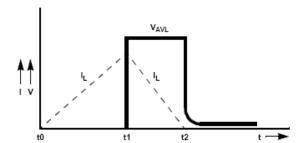
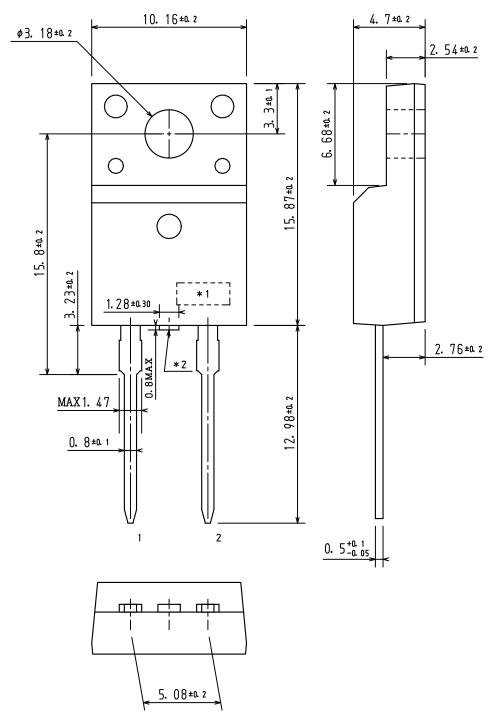
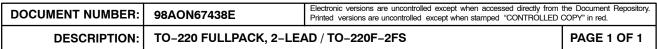


Figure 14. Avalanche Energy Test Circuit




Figure 15. Avalanche Current and Voltage Waveforms


STEALTH is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

TO-220 Fullpack, 2-Lead / TO-220F-2FS CASE 221AS ISSUE O

DATE 29 FEB 2012

ON Semiconductor and a retrademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales