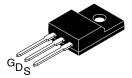
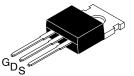
MOSFET - N-Channel, QFET

900 V, 4.0 A, 4.2 Ω

FQP4N90C, FQPF4N90C

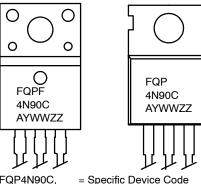

Description


This N-Channel enhancement mode power MOSFET is produced using onsemi's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

- 4.0 A, 900 V, $R_{DS(on)} = 4.2 \Omega$ (Max.) @ $V_{GS} = 10 \text{ V}$, $I_D = 2.0 \text{ A}$
- Low Gate Charge (Typ. 17 nC)
- Low Crss (Typ. 5.6 pF)
- 100% Avalanche Tested

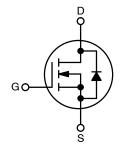
V _{DSS}	R _{DS(on)} MAX	I _D MAX	
900 V	4.2 Ω @ 10 V	4.0 A	



TO-220 Fullpack, 3-Lead / TO-220F-3SG **CASE 221AT**

TO-220-3LD **CASE 340AT**

MARKING DIAGRAM



FQP4N90C, FQPF4N90C

1

= Assembly Location YWW = Date Code (Year & Week) = Assembly Lot ZΖ

N-CHANNEL MOSFET

ORDERING INFORMATION

Part Number	Package	Shipping	
FQP4N90C	TO-220	1000 Units / Tube	
FQPF4N90C	TO-220F	1000 Units / Tube	

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter		FQP4N90C	FQPF4N90C	Unit
V _{DSS}	Drain-Source Voltage		Ş	900	V
I _D	Drain Current	– Continuous (T _C = 25°C)	4	4*	Α
		- Continuous (T _C = 100°C)	2.3	2.3*	
I _{DM}	Drain Current	- Pulsed (Note 1)	16	16*	Α
V _{GSS}	Gate-Source Voltage		±30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		570		mJ
I _{AR}	Avalanche Current (Note 1)		4		Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		14		mJ
dv/dt	Peak Diode Recovery dv/dt (N	lote 3)	4.5		V/ns
P_{D}	Power Dissipation	(T _C = 25°C)	140	47	W
		- Derate above 25°C	1.12	0.38	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C
T_L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	FQP4N90C	FQPF4N90C	Unit
$R_{ heta JC}$	Thermal Resistance, Junction-to-Case, Max.	0.89	2.66	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Max.	0.5	-	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	62.5	°C/W

^{*}Drain current limited by maximum junction temperature.

1. Repetitive rating: pulse–width limited by maximum junction temperature.

2. L = 67 mH, I_{AS} = 4 A, V_{DD} = 50 V, R_{G} = 25 Ω , starting T_{J} = 25°C.

3. $I_{SD} \le 4$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS}$, starting T_{J} = 25°C.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS	•	•	•		•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	900	-	_	V
$\Delta BV_{DSS}/ \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C	-	1.05	-	V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 900 V, V _{GS} = 0 V	-	-	10	μΑ
		V _{DS} = 720 V, T _C = 125°C	-	-	100	1
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V	-	-	-100	nA
ON CHARA	CTERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.0	-	5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 2 A	-	3.5	4.2	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 2 A	-	5	_	S
DYNAMIC C	CHARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	740	960	pF
C _{oss}	Output Capacitance	1	-	65	85	pF
C _{rss}	Reverse Transfer Capacitance	1	-	5.6	7.3	pF
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 450 \text{ V}, I_D = 4 \text{ A}, R_G = 25 \Omega$	-	25	60	ns
t _r	Turn-On Rise Time	(Note 4)	_	50	110	ns
t _{d(off)}	Turn-Off Delay Time]	-	40	90	ns
t _f	Turn-Off Fall Time	1	-	35	80	ns
Qg	Total Gate Charge	V _{DS} = 720 V, I _D = 4 A, V _{GS} = 10 V	-	17	22	nC
Q _{gs}	Gate-Source Charge	(Note 4)	-	4.5	_	nC
Q_{gd}	Gate-Drain Charge	1	-	7.5	-	nC
DRAIN-SOL	JRCE DIODE CHARACTERISTICS AND M	MAXIMUM RATINGS				
IS	Maximum Continuous Drain-Source Diode Forward Current		-	-	4	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current		-	-	16	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 4 A	-	-	1.4	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 \text{ V}, I_{SD} = 4 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$	-	450	_	ns
Q _{rr}	Reverse Recovery Charge	1	-	3.5	-	μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Essentially independent of operating temperature.

TYPICAL CHARACTERISTICS

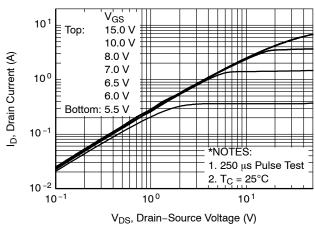


Figure 1. On-Region Characteristics

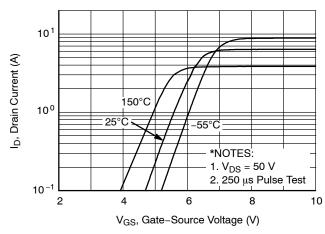


Figure 2. Transfer Characteristics

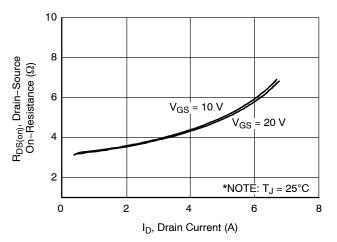


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

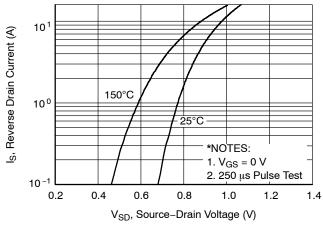


Figure 4. Body Diode Forward Voltage Variation with Source Current and Temperature

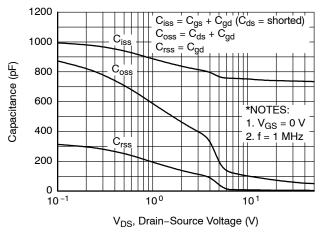


Figure 5. Capacitance Characteristics

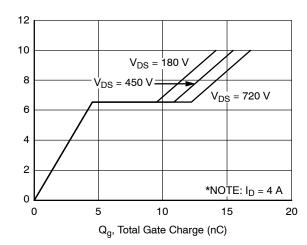


Figure 6. Gate Charge Characteristics

V_{GS}, Gate-Source Voltage (V)

TYPICAL CHARACTERISTICS (CONTINUED)

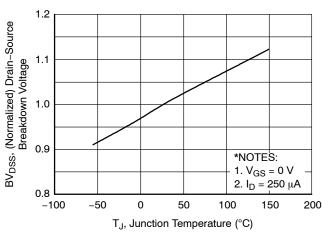


Figure 7. Breakdown Voltage Variation vs. Temperature

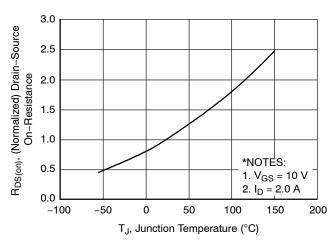


Figure 8. On-Resistance Variation vs. Temperature

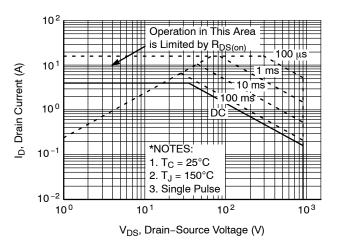


Figure 9. Maximum Safe Operating Area for FQP4N90C

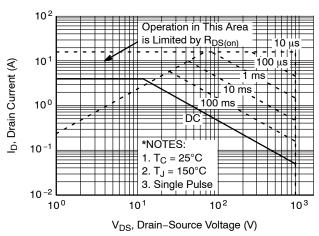
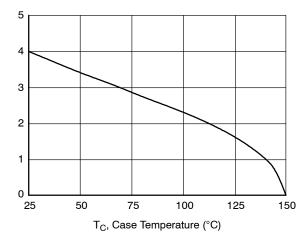



Figure 10. Maximum Safe Operating Area for FQPF4N90C

ID, Drain Current (A)

Figure 11. Maximum Drain Current vs.

Case Temperature

TYPICAL CHARACTERISTICS (CONTINUED)

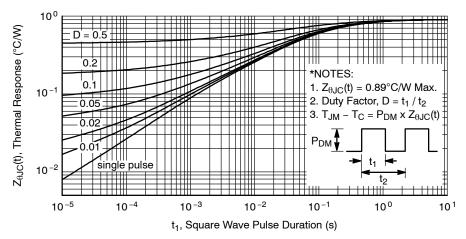


Figure 12. Transient Thermal Response Curve for FQP4N90C

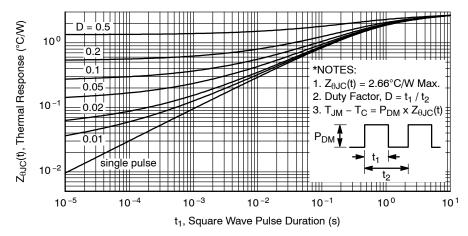


Figure 13. Transient Thermal Response Curve for FQPF4N90C

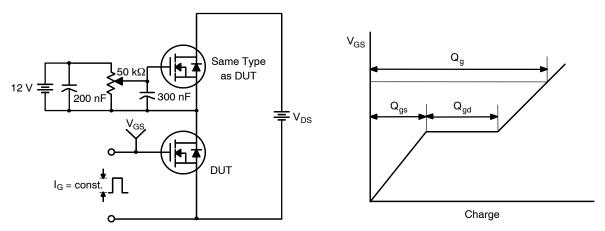


Figure 14. Gate Charge Test Circuit & Waveform

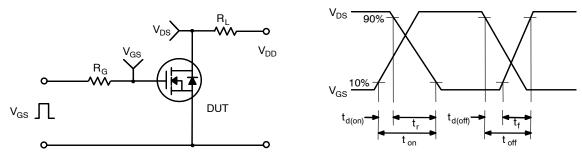


Figure 15. Resistive Switching Test Circuit & Waveforms

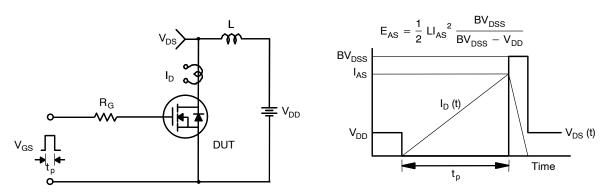
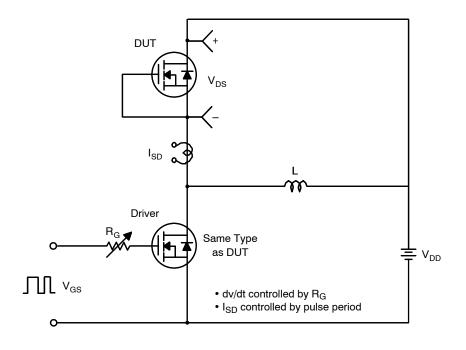
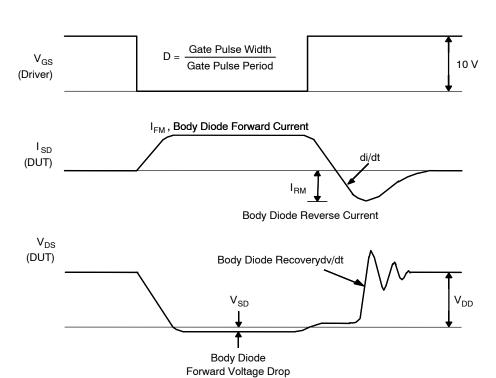
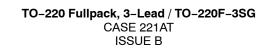
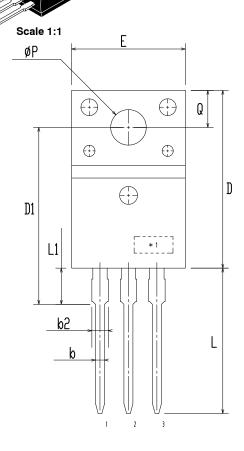
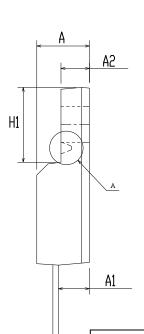
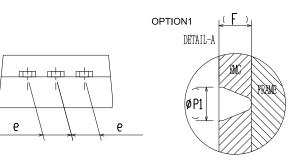



Figure 16. Unclamped Inductive Switching Test Circuit & Waveforms


Figure 17. Peak Diode Recovery dv/dt Test Circuit & Waveforms

DATE 19 JAN 2021

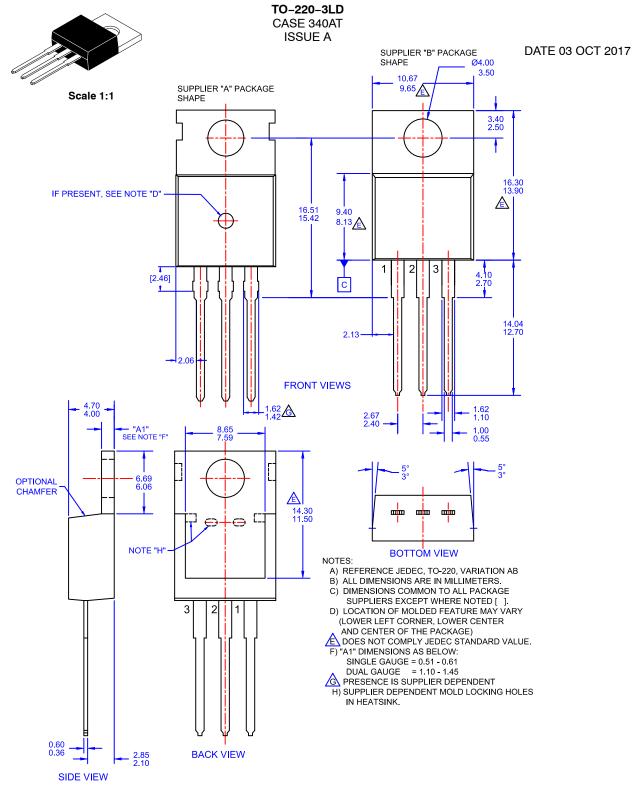
DIM	MILLIMITERS			
ויונע	MIN	NDM	MAX	
Α	4.50	4.70	4.90	
A1	2.56	2.76	2.96	
A2	2.34	2.54	2.74	
b	0.70	0.80	0.90	
b2	~	2	1.47	
С	0.45	0.50	0.60	
D	15.67	15.87	16.07	
D1	15.60	15.80	16.00	
E	9.96	10.16	10.36	
е	2.34	2.54	2.74	
F	~	0.84	2	
H1	6.48	6.68	6.88	
L	12.78	12.98	13.18	
L1	3.03	3.23	3.43	
ØΡ	2.98	3.18	3.38	
Ø P1	~	1.00	~	
Q	3.20	3.30	3.40	

MILLIMITEDS

NOTES:

- A. DIMENSION AND TOLERANCE AS ASME Y14.5-2009
- B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUCSIONS.

C


C. OPTION 1 - WITH SUPPORT PIN HOLE OPTION 2 - NO SUPPORT PIN HOLE

DOCUMENT NUMBER: 98AON67439E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION: TO-220 FULLPACK, 3-LEAD / TO-220F-3SG PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98AON13818G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales