ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

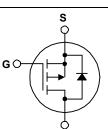
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

ON Semiconductor®

FQP2P40

P-Channel QFET[®] MOSFET -400 V, -2.0 A, 6.5 Ω

Description


These P-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

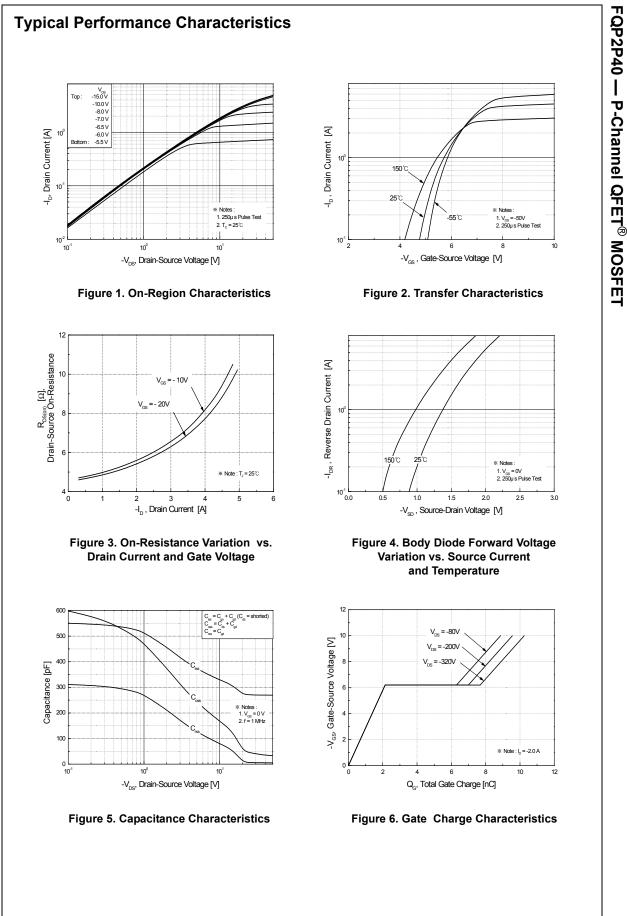
This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for electronic lamp ballast based on complimentary half bridge.

Features

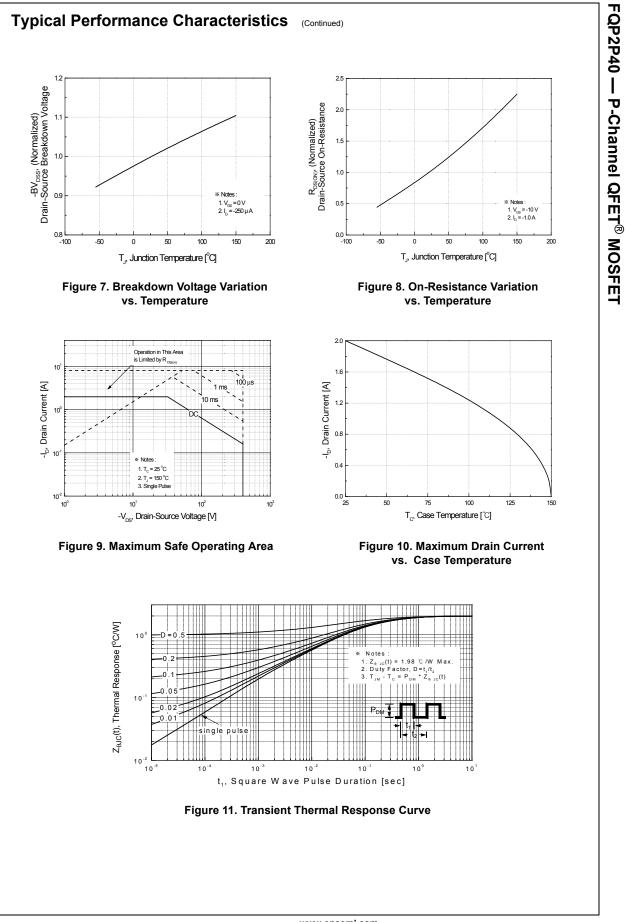
- -2.0 A, -400 V, $R_{DS(on)}$ = 6.5 Ω (Max.) @ V_{GS} = -10 V
- Low Gate Charge (Typ. 10 nC)
- Low Crss (Typ. 6.5 pF)
- Fast Switching
- 100% Avalanche Tested
- Improved dv/dt Capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

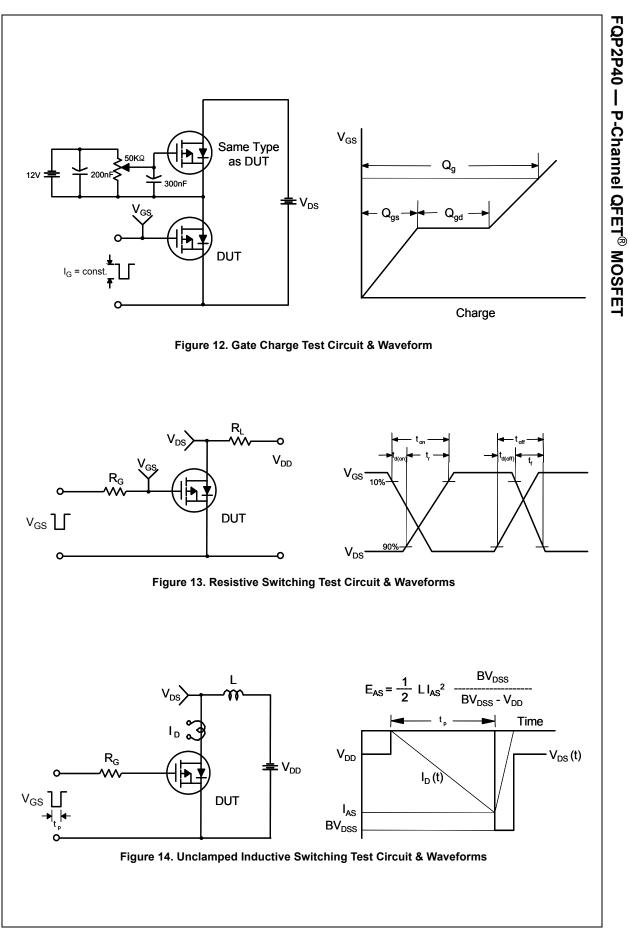
Symbol	Parameter	FQP2P40-F080	Unit	
V _{DSS}	Drain-Source Voltage	-400	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}$	-2.0	A	
	- Continuous (T _C = 100	°C)	-1.27	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	-8.0	A
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	120	mJ
I _{AR}	Avalanche Current	(Note 1)	-2.0	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	6.3	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.5	V/ns
PD	Power Dissipation ($T_C = 25^{\circ}C$)		63	W
	- Derate Above 25°C		0.51	W/°C
T _J , T _{STG}	Operating and Storage Temperature Ran	ge	-55 to +150	°C
Τ _L	Maximum Lead Temperature for Solderin 1/8" from Case for 5 Seconds	g,	300	°C

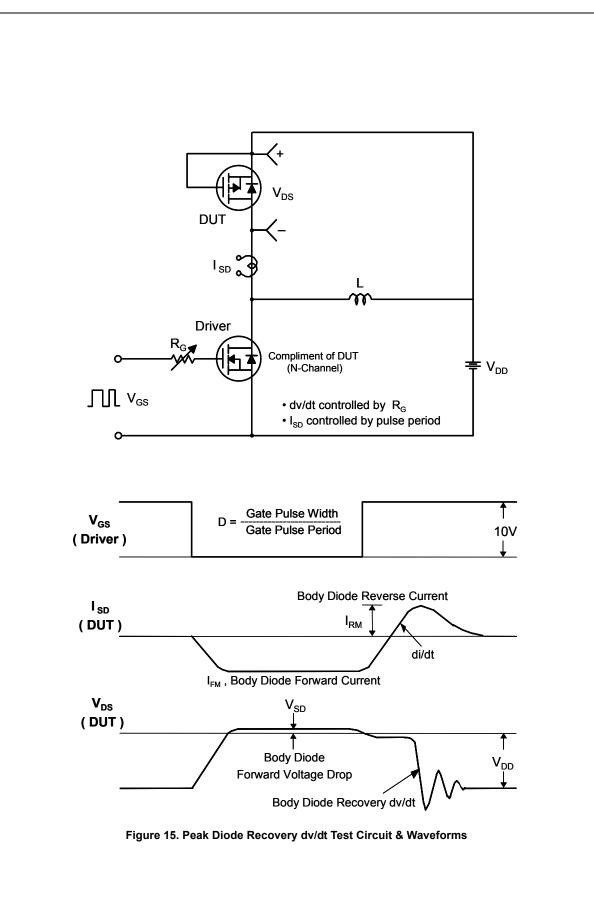

Thermal Characteristics

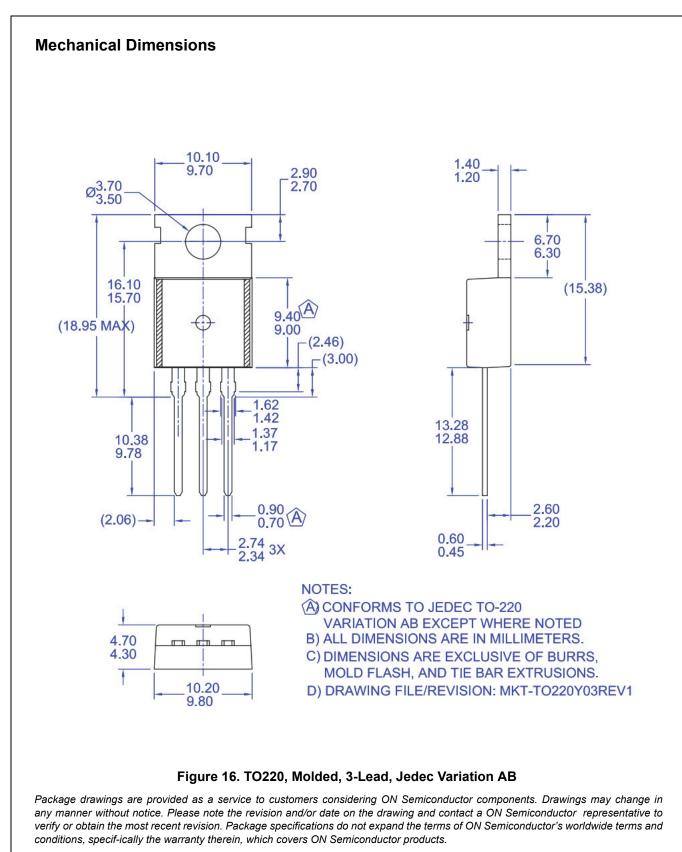
Symbol	Parameter	FQP2P40-F080	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	1.98	°C/W	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.5	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W	


Part Number		Top Mark	Package	Packing Method	Reel Size	Tape Width		Qu	Quantity	
-QP2P40	2P40-F080 FQP2P40 TO-220		TO-220	Tube N/A		N/A		50	50 units	
lerica	l Cha	racteristics	T _C = 25°C unle	ess otherwise noted.						
Symbol		Parameter		Test Conditi	ions	Min.	Тур.	Max.	Unit	
Off Cha	aracter	istics								
BV _{DSS}	Drain-Source Breakdown Voltage		V _{GS} = 0 V, I _D = -250 μA		-400			V		
ΔBV_{DSS}	Breakdown Voltage Temperature Coefficient		$I_D = -250 \mu$ A, Referenced to 25°C							
$/\Delta T_J$						-		V/°C		
IDSS	Zero Gate Voltage Drain Current		V _{DS} = -400 V, V _{GS} = 0 V				-1	μA		
			$V_{DS} = -320 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$				-10	μA		
GSSF	Gate-B	Gate-Body Leakage Current, Forward		$V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				-100	nA	
I _{GSSR}	Gate-B	Gate-Body Leakage Current, Reverse		$V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$				100	nA	
			1							
On Cha										
V _{GS(th)}		hreshold Voltage		$V_{DS} = V_{GS}, I_{D} = -250$	μA	-3.0		-5.0	V	
R _{DS(on)}		Drain-Source sistance		V_{GS} = -10 V, I_{D} = -1.0) A		5.0	6.5	Ω	
9 _{FS}	Forwar	d Transconductance		V_{DS} = -50 V, I_{D} = -1.0) A		1.42		S	
-	1	racteristics								
	I Innut C	apacitance		$V_{DS} = -25 V, V_{GS} = 0$	V,		270	350	pF	
		a "		$v_{\rm DS} = -25 v, v_{\rm GS} = 0$				~~		
C _{oss}	Output	Capacitance		v _{DS} = -25 v, v _{GS} = 0 f = 1.0 MHz			45	60	pF	
C _{iss} C _{oss} C _{rss}	Output	Capacitance e Transfer Capacitanc	e				45 6.5	60 8.5	pF pF	
C _{oss} C _{rss}	Output Revers	•	e				_			
C _{oss} C _{rss} Switch	Output Revers	e Transfer Capacitanc	e	f = 1.0 MHz			_			
C _{oss} C _{rss} Switch	Output Revers ing Ch Turn-O	e Transfer Capacitance	e	f = 1.0 MHz V _{DD} = -200 V, I _D = -2	.0 A,		6.5	8.5	pF	
C _{oss} C _{rss} Switch t _{d(on)}	Output Revers ing Ch Turn-O Turn-O	e Transfer Capacitanc aracteristics n Delay Time	e	f = 1.0 MHz	.0 A,		6.5 9	8.5	pF ns	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)}	Output Revers ing Ch Turn-O Turn-O Turn-O	e Transfer Capacitanc aracteristics n Delay Time n Rise Time	e	f = 1.0 MHz V _{DD} = -200 V, I _D = -2	.0 A,		6.5 9 33	8.5 30 75	pF ns ns	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)}	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O	e Transfer Capacitanc aracteristics n Delay Time n Rise Time ff Delay Time	e	f = 1.0 MHz V _{DD} = -200 V, I _D = -2 V _{GS} = -10 V, R _G = 25	.0 A, 5 Ω (Note 4)		6.5 9 33 22	8.5 30 75 55	pF ns ns	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Turn-O Total G	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time	e	f = 1.0 MHz V_{DD} = -200 V, I _D = -2 V_{GS} = -10 V, R _G = 25 V_{DS} = -320 V, I _D = -2	.0 A, 5 Ω (Note 4)		9 33 22 25	8.5 30 75 55 60	ns ns ns ns	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Turn-O Turn-O Total G Gate-S	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge	e	f = 1.0 MHz V _{DD} = -200 V, I _D = -2 V _{GS} = -10 V, R _G = 25	.0 A, 5 Ω (Note 4)		6.5 9 33 22 25 10	8.5 30 75 55 60 13	ns ns ns ns nC	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs}	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Turn-O Turn-O Total G Gate-S	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge	e	f = 1.0 MHz V_{DD} = -200 V, I _D = -2 V_{GS} = -10 V, R _G = 25 V_{DS} = -320 V, I _D = -2	.0 A, 5 Ω (Note 4)		9 33 22 25 10 2.1	8.5 30 75 55 60 13 	pF ns ns ns nc nC	
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array} \\ \hline \\ Switch \\ t_{d(on)} \\ t_r \\ t_{d(off)} \\ t_f \\ \hline \\ Q_g \\ \hline \\ Q_{gs} \\ \hline \\ Q_{gd} \\ \hline \end{array}$	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-D	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge		f = 1.0 MHz V_{DD} = -200 V, I _D = -2 V_{GS} = -10 V, R _G = 25 V_{DS} = -320 V, I _D = -2 V_{GS} = -10 V	.0 A, 5 Ω (Note 4) .0 A, (Note 4)		9 33 22 25 10 2.1	8.5 30 75 55 60 13 	pF ns ns ns nc nC	
C_{oss} C_{rss} Switch d(on) r d(off) f Q_{g} Q_{gs} Q_{gd} Drain-S	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-D	aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge orain Charge	istics an	f = 1.0 MHz V_{DD} = -200 V, I _D = -2 V_{GS} = -10 V, R _G = 25 V_{DS} = -320 V, I _D = -2 V_{GS} = -10 V d Maximum Rati	.0 A, 5 Ω (Note 4) .0 A, (Note 4)		9 33 22 25 10 2.1	8.5 30 75 55 60 13 	pF ns ns ns nc nC	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _s	Output Revers ing Ch. Turn-O Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-D Source Maxim	aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge train Charge	istics an Source Dio	f = 1.0 MHz V_{DD} = -200 V, I_D = -2 V_{GS} = -10 V, R_G = 25 V_{DS} = -320 V, I_D = -2 V_{GS} = -10 V d Maximum Rati de Forward Current	.0 A, 5 Ω (Note 4) .0 A, (Note 4)		6.5 9 33 22 25 10 2.1 5.5	8.5 30 75 55 60 13 	ns ns ns nC nC	
C _{oss} C _{rss} Switch t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _s	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-S Gate-S Gate-S Gate-S Maxim Maxim	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge orain Charge Diode Character um Continuous Drain-	istics an Source Dioo ce Diode F	f = 1.0 MHz V_{DD} = -200 V, I_D = -2 V_{GS} = -10 V, R_G = 25 V_{DS} = -320 V, I_D = -2 V_{GS} = -10 V d Maximum Rati de Forward Current	.0 A, 5 Ω (Note 4) .0 A, (Note 4) ngs		9 33 22 25 10 2.1 5.5	8.5 30 75 55 60 13 	ns ns ns nC nC nC	
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \begin{array}{c} t_{t_{d}(off)} \\ t_{f} \\ \hline \\ $	Output Revers ing Ch Turn-O Turn-O Turn-O Turn-O Total G Gate-S Gate-S Gate-S Gate-S Gate-S Gate-S Gate-S Gate-S	e Transfer Capacitance aracteristics n Delay Time n Rise Time ff Delay Time ff Fall Time ate Charge ource Charge ource Charge train Charge Diode Character um Continuous Drain-Sour	istics an Source Dioo ce Diode F	f = 1.0 MHz V_{DD} = -200 V, I_D = -2 V_{GS} = -10 V, R_G = 25 V_{DS} = -320 V, I_D = -2 V_{GS} = -10 V d Maximum Rati de Forward Current provard Current	.0 A, 5 Ω (Note 4) .0 A, (Note 4) ngs	 	9 33 22 25 10 2.1 5.5	8.5 30 75 55 60 13 -2.0 -8.0	pF ns ns ns nC nC nC A A	

FQP2P40 — P-Channel QFET[®] MOSFET


1. Repetitive rating : pulse-width limited by maximum junction temperature. 2. L = 52.5 mH, I_{AS} = -2.0 A, V_{DD} = -50 V, R_G = 25 Ω , Starting T_J = 25°C. 3. I_{SD} \leq -2.0 A, di/dt \leq 200 A/ μ s, V_{DD} \leq BV_{DSS}, Starting T_J = 25°C. 4. Essentially independent of operating temperature.


www.onsemi.com



www.onsemi.com 4

www.onsemi.com

FQP2P40 — P-Channel QFET[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative