onsemi

Transistor, N-Channel, Field Effect, Enhancement Mode, 2.5 V Specified

FDT439N

General Description

This N-Channel enhancement mode power field effect transistor is produced using **onsemi**'s proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These products are well suited to low voltage, low current applications such as notebook computer power management, battery powered circuits, and DC motor control.

Features

• 6.3 A, 30 V

 $\begin{array}{l} R_{DS(on)} = 0.045 \; \Omega @ \; V_{GS} = 4.5 \; V \\ R_{DS(on)} = 0.058 \; \Omega @ \; V_{GS} = 2.5 \; V \end{array}$

- Fast switching speed.
- High power and current handling capability in a widely used surface mount package.
- This Device is Pb–Free

Applications

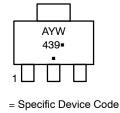
- DC/DC Converter
- Load Switch
- Motor Driving

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Pa	Ratings	Unit		
V _{DSS}	Drain-Source Volta	in-Source Voltage		V	
V _{GSS}	Gate-Source Voltag	Gate-Source Voltage			
I _D	Drain Current	rain Current – Continuous (Note 1a)			
		– Pulsed			
PD	Power	(Note 1a)	3	W	
	Dissipation for Single Operation	(Note 1b)	1.3		
	enigie operation	(Note 1c)	1.1		
T _J , T _{stg}	Operating and Stora Temperature Range		–55 to +150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

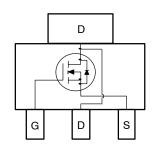

Symbol	Symbol Parameter		Unit
Reja	BJA Thermal Resistance, Junction-to-Ambient (Note 1a)		°C/W
Rejc	Thermal Resistance, Junction-to-Case (Note 1)	12	°C/W

V _{DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	0.045 Ω @ 4.5 V	6.3 A
	0.058 Ω @ 2.5 V	

SOT-223 CASE 318H

MARKING DIAGRAM

- = Date Code
- W = Work Week


Α

Υ

- 439 = Specific Device Code
 - = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

FDT439N

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} = 0 V, I_D = 250 μ A	30	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$	-	40	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	1	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V_{GS} = 8 V, V_{DS} = 0 V	-	-	100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -8 V, V_{DS} = 0 V	-	-	-100	nA

ON CHARACTERISTICS (Note 2)

V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.4	0.67	1	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C	-	-2.2	-	mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 4.5 \; V, \; I_D = 6.3 \; A \\ V_{GS} = 4.5 \; V, \; I_D = 6.3 \; A, \; T_J = 125^\circ C \\ V_{GS} = 2.5 \; V, \; I_D = 5.5 \; A \end{array} $	- -	0.038 0.055 0.048	0.045 0.072 0.058	Ω
I _{D(on)}	On-State Drain Current	V_{GS} = 4.5 V, V_{DS} = 5 V	10	_	-	А
9 _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 6.3 \text{ A}$	-	17	-	S

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0 V, f = 1.0 MHz	-	500	-	pF
C _{oss}	Output Capacitance		-	185	-	pF
C _{rss}	Reverse Transfer Capacitance		-	43	-	pF

SWITCHING CHARACTERISTICS (Note 2)

Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 1 \text{ A}, \text{ V}_{GS} = 4.5 \text{ V},$	-	6	12	ns
Turn–On Rise Time	$R_{GEN} = 6 \Omega$	-	10	18	ns
Turn-Off Delay Time		-	30	48	ns
Turn-Off Fall Time		-	10	18	ns
Total Gate Charge	V_{DS} = 15 V, I_{D} = 6.3 A, V_{GS} = 4.5 V	-	10.7	15	nC
Gate-Source Charge		-	0.9	-	nC
Gate-Drain Charge		_	3.7	_	nC
	Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$\begin{tabular}{ c c c c c } \hline Turn-On Rise Time & $R_{GEN} = 6 \ \Omega$ \\ \hline Turn-Off Delay Time & $Turn-Off Fall Time & $V_{DS} = 15 \ V, \ I_D = 6.3 \ A, \ V_{GS} = 4.5 \ V$ \\ \hline Gate-Source Charge & $V_{DS} = 15 \ V, \ I_D = 6.3 \ A, \ V_{GS} = 4.5 \ V$ \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Turn-On Rise Time $P_{GEN} = 6 \Omega$ $ 10$ Turn-Off Delay Time $ 30$ Turn-Off Fall Time $ 10$ Total Gate Charge $V_{DS} = 15 V$, $I_D = 6.3 A$, $V_{GS} = 4.5 V$ $-$ Gate-Source Charge $ 0.9$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATIINGS

I _S	Maximum Continuous Drain-Source Diode Forward Current		-	-	2.5	А
V_{SD}	Drain-Source Diode Forward Voltage	V_{GS} = 0 V, I_S = 2.5 A $\ \mbox{(Note 2)}$	-	0.8	1.2	V

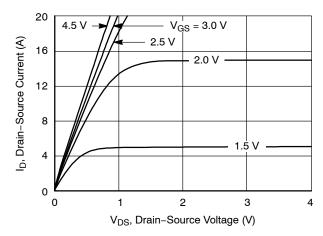
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

a. 42°C/W when mounted on a 1 in² pad of 2 oz copper.

b. 95°C/W when mounted on a 0.066 in² pad of 2 oz copper. ľ III


c. 110°C/W when mounted on a minimum mounting pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 µs, Duty cycle \leq 2.0 %.

FDT439N

TYPICAL CHARACTERISTICS

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8 0.7

-50

Drain-Source On-Resistance

R_{DS(ON)}, Normalized

 $I_{\rm D} = 6.3 \, {\rm A}$

-25

0

V_{GS} = 4.5 V

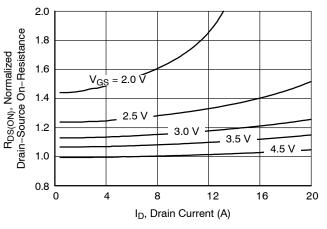
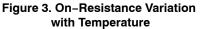



Figure 2. On-Resistance Variation with Drain Current and Gate Voltage

50

25

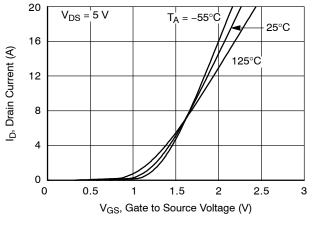
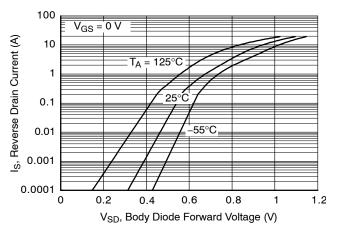
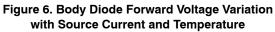
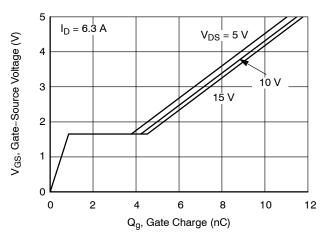
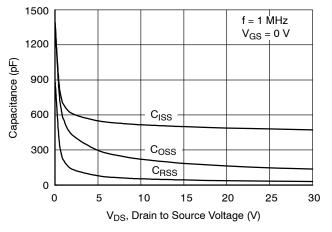




Figure 5. Transfer Characteristics

Figure 4. On-Resistance Variation with Gate-to-Source Voltage


5



FDT439N

TYPICAL ELECTRICAL CHARACTERISTICS (continued)

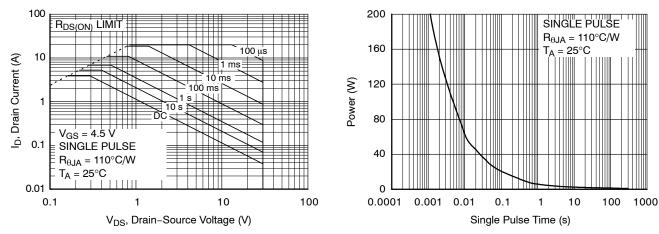
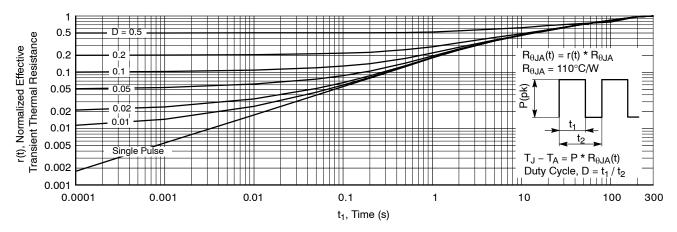




Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Maximum Power Dissipation

ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDT439N	439	SOT–223 (Pb–free)	13"	12 mm	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOT-223 CASE 318H ISSUE B DATE 13 MAY 2020 A NDTES SCALE 2:1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. CONTROLLING DIMENSION: MILLIMETERS DIMENSIONS D & E1 ARE DETERMINED AT DATUM H. DIMENSIONS DO NOT INCLUDE MOLD FLASH, PROTRUSIONS DG GATE BURRS. SHALL NOT EXCEED 0.23mm PER SIDE. LEAD DIMENSIONS & AND &1 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBBAR PROTRUSION IS 0.08mm PER SIDE. DATUMS A AND B ARE DETERMINED AT DATUM H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS & AND &1. DIMENSIONING AND TOLERANCING PER ASME 1. b1 2 з. В 4. 5. 6. 7. b AND b1. MILLIMETERS DIM MIN. NITM. MAX. e ___ ___ 1.80 k Α \oplus 0.10 \otimes C A B 0.02 0.06 0.11 A1 TOP VIEW NDTE 7 0.60 0.74 0.88 b 2.90 3.10 b1 3.00 DETAIL A 0.24 ____ 0.35 С H 6.70 D 6.30 6.50 Ε 6.70 7.00 7.30 E1 3.30 3.50 3.70 0.10 C 2.30 BSC e SIDE VIEW FND VIEW L 0.25 ___ i 10° 0° ____ -3.80 2.00 Α1 DETAIL A 8.30 3x= Assembly Location GENERIC A 2.00 **MARKING DIAGRAM*** Y = Year = Work Week w XXXXX = Specific Device Code = Pb-Free Package 5'30 AYW 3x 1.50 (Note: Microdot may be in either location) XXXXX= PITCH *This information is generic. Please refer to RECOMMENDED MOUNTING FOOTPRINT device data sheet for actual part marking. For additional information on our Pb-Free strategy Pb-Free indicator, "G" or microdot "•", may ж and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D. or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98ASH70634A Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-223 PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights nor the

ON Semiconductor[®]

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>