

MOSFET - N-Channel, POWERTRENCH®

100 V, 61 A, 16 m Ω

FDP3652, FDB3652

Features

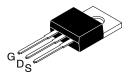
- $R_{DS(on)} = 14 \text{ m}\Omega \text{ (Typ.)} @ V_{GS} = 10 \text{ V}, I_D = 61 \text{ A}$
- $Q_{g(tot)} = 41 \text{ nC (Typ.)} @ V_{GS} = 10 \text{ V}$
- Low Miller Charge
- Low Q_{RR} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- These Devices are Pb-Free and Halide Free

Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Battery Protection Circuit
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MOSFET MAXIMUM RATINGS (T_C = 25°C, unless otherwise noted)

Symbol	Parameter	FDP3652 / FDB3652	Unit
V_{DSS}	Drain to Source Voltage	100	V
V _{GS}	Gate to Source Voltage	+20	V
I _D	$ \begin{array}{l} \text{Drain Current} \\ \text{Continuous } (T_C = 25^{\circ}\text{C}, \text{V}_{GS} = 10 \text{ V}) \\ \text{Continuous } (T_C = 100^{\circ}\text{C}, \text{V}_{GS} = 10 \text{ V}) \\ \text{Continuous } (T_{amb} = 25^{\circ}\text{C}, \text{V}_{GS} = 10 \text{ V}), \\ \text{with } R_{\theta JA} = 43^{\circ}\text{C/W}) \\ \text{Pulsed} \end{array} $	61 43 9 Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)	182	mJ
P _D	Power Dissipation	150	W
	Derate above 25°C	1.0	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°c


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_C = 25°C, unless otherwise noted)

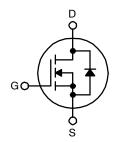
Symbol	Parameter	FDP3652 / FDB3652	Unit
R _θ JC	Thermal Resistance Junction to Case TO-220, D ² -PAK	1.0	°C/W
R _θ JA	Thermal Resistance Junction to Ambient, TO-220, D ² -PAK (Note 2)	62	
R _{θJA}	Thermal Resistance Junction to Ambient D ² –PAK, 1 in ² Copper Pad Area	43	

1

V _{DS}	R _{DS(on)} MAX	I _D MAX
100 V	16 mΩ @ 10 V	61 A

TO-220-3LD CASE 340AT

D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ


MARKING DIAGRAM

&Z&3&K FDx3652

&Z = Assembly Plant Code &3 = 3-Digit Date Code

&K = 2-Digits Lot Run Traceability Code

FDx3652 = Device Code (x = P, B)

N-Channel

ORDERING INFORMATION

Device	Package	Shipping [†]
FDP3652	TO-220-3LD	800 Units / Tube
FDB3652	D2PAK-3	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Condition	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100	_	_	V	
Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ	
	V _{DS} = 80 V, V _{GS} = 0 V, T _C = 150°C	-	-	250	1	
Gate to Source Leakage Current	V _{GS} = ±20 V	-	-	±100	nA	
CTERISTICS			•		-	
Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	_	4	V	
Drain to Source On Resistance	I _D = 61 A, V _{GS} = 10 V	-	0.014	0.016	Ω	
	I _D = 30 A, V _{GS} = 6 V	-	0.018	0.026	1	
	I _D = 61 A, V _{GS} = 10 V, T _J = 175°C	-	0.035	0.043	1	
HARACTERISTICS	•		•		-	
Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	2880	_	pF	
Output Capacitance	7	-	390	-	pF	
Reverse Transfer Capacitance	7	-	100	-	pF	
Total Gate Charge at 10 V	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 50 \text{ V}, I_D = 61 \text{ A}, I_g = 1.0 \text{ mA}$	-	41	53	nC	
Threshold Gate Charge	$V_{GS} = 0 \text{ V to 2 V, } V_{DD} = 50 \text{ V, } I_D = 61 \text{ A,} I_g = 1.0 \text{ mA}$	-	5	6.5	nC	
Gate to Source Gate Charge	V _{DD} = 50 V, I _D = 61 A, I _g = 1.0 mA	-	15	-	nC	
Gate Charge Threshold to Plateau	7	-	10	-	nC	
Gate to Drain "Miller" Charge	7	-	10	-	nC	
CHARACTERISTICS (V _{GS} = 10 V)	•	•	•			
Turn-On Time	$V_{DD} = 50 \text{ V}, I_D = 61 \text{ A}, V_{GS} = 10 \text{ V},$	_	-	146	ns	
Turn-On Delay Time	$H_{GS} = 6.8 \Omega$	-	12	-	ns	
Rise Time	7	-	85	-	ns	
Turn-Off Delay Time	7	-	26	-	ns	
Fall Time	7	-	45	-	ns	
Turn-Off Time	7	-	-	107	ns	
DRAIN-SOURCE DIODE CHARACTERISTICS						
Source to Drain Diode Voltage	I _{SD} = 61 A	-	-	1.25	V	
	I _{SD} = 30 A	-	-	1.0	V	
Reverse Recovery Time	I _{SD} = 61 A, dI _{SD} /dt = 100 A/μs	-	-	62	ns	
Reverse Recovery Charge	I _{SD} = 61 A, dI _{SD} /dt = 100 A/μs	-	-	45	nC	
	Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current CTERISTICS Gate to Source Threshold Voltage Drain to Source On Resistance HARACTERISTICS Input Capacitance Output Capacitance Output Capacitance Total Gate Charge at 10 V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain "Miller" Charge CHARACTERISTICS (V _{GS} = 10 V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time RCE DIODE CHARACTERISTICS Source to Drain Diode Voltage Reverse Recovery Time	ACTERISTICS Drain to Source Breakdown Voltage $I_D = 250 \mu\text{A}$, $V_{GS} = 0 \text{V}$ Zero Gate Voltage Drain Current $V_{DS} = 80 \text{V}$, $V_{GS} = 0 \text{V}$ VDS = 80 V, $V_{GS} = 0 \text{V}$, $V_{CS} = 150 ^{\circ}\text{C}$ Cate to Source Leakage Current VGS = $\pm 20 \text{V}$ CTERISTICS Gate to Source Threshold Voltage Up = 61 A, VGS = 10 V Ip = 61 A, VGS = 10 V Ip = 61 A, VGS = 10 V, TJ = 175 °C HARACTERISTICS Input Capacitance VDS = 25 V, VGS = 0 V, TJ = 175 °C HARACTERISTICS VDS = 25 V, VGS = 0 V, TJ = 1 MHz VDS = 25 V, VGS = 0 V, TJ = 1 MHz VGS = 0 V to 10 V, VDD = 50 V, ID = 61 A, Ig = 1.0 mA Gate to Source Gate Charge QGS = 0 V to 10 V, VDD = 50 V, ID = 61 A, Ig = 1.0 mA VDD = 50 V, ID = 61 A, Ig = 1.0 mA CHARACTERISTICS (VGS = 10 V) Turn-On Delay Time RGS = 6.8 Ω VDD = 50 V, ID = 61 A, VGS = 10 V, ID = 61 A, VGS = 10 V, ID = 61 A,	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CCTERISTICS Drain to Source Breakdown Voltage $I_D = 250 \mu\text{A}, V_{GS} = 0 V$ 100 - Zero Gate Voltage Drain Current $V_{DS} = 80 V, V_{GS} = 0 V$ - - - VDS = 80 V, VGS = 0 V, VGS = 0 V, VGS = 150°C - - - - Gate to Source Leakage Current $V_{GS} = \pm 20 V$ - - - - CTERISTICS Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 250 \mu$ A 2 - <	COTERISTICS Drain to Source Breakdown Voltage I _D = 250 μA, V _{GS} = 0 V 100 - - Zero Gate Voltage Drain Current V _{DS} = 80 V, V _{GS} = 0 V - - - 1 V _{DS} = 80 V, V _{GS} = 0 V - - - ±100 CASTERISTICS Gate to Source Threshold Voltage V _{GS} = V _{DS} , I _D = 250 μA 2 - 4 Drain to Source On Resistance I _D = 61 A, V _{GS} = 10 V - 0.014 0.016 I _D = 30 A, V _{GS} = 6 V - 0.035 0.043 HARACTERISTICS Input Capacitance V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz - 2880 - Output Capacitance V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz - 2880 - Reverse Transfer Capacitance V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz - 2880 - Total Gate Charge at 10 V V _{GS} = 0 V to 10 V, V _{DD} = 50 V, I _D = 61 A, I _D = 61 A, I _D = 61 A, I _D = 100 - 41 53 Gate to Source Gate Charge V _{DD} = 50 V, I _D = 61 A, I _D	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Starting T_J = 25°C, L = 0.228 mH, I_{AS} = 40 A.

2. Pulse Width = 100 s.

TYPICAL CHARACTERISTICS (T_C= 25°C, unless otherwise noted)

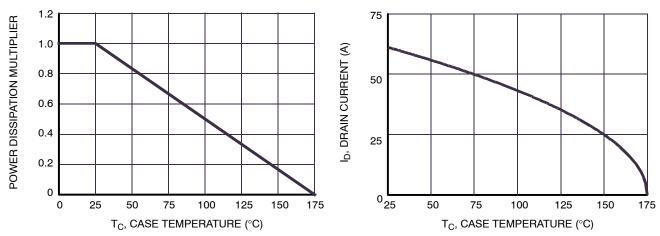


Figure 1. Normalized Power Dissipation vs.

Ambient Temperature

Figure 2. Maximum Continuous Drain Current vs.

Case Temperature

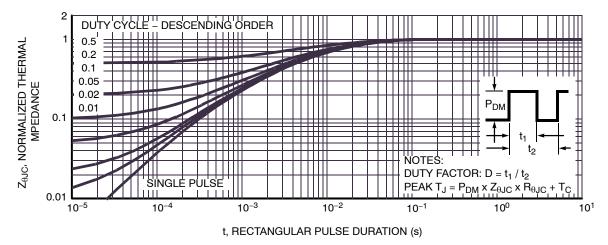


Figure 3. Normalized Maximum Transient Thermal Impedance

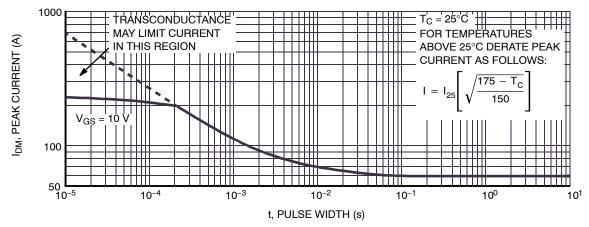


Figure 4. Peak Current Capability

TYPICAL CHARACTERISTICS ($T_C = 25^{\circ}C$, unless otherwise noted) (continued)

IAS, AVALANCHE CURRENT (A)

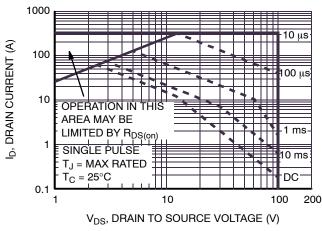
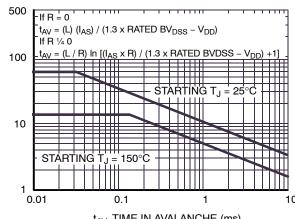



Figure 5. Forward Bias Safe Operating Area

t_{AV}, TIME IN AVALANCHE (ms)

NOTE: Refer to **onsemi** Application Notes

AN7514 and AN7515

Figure 6. Unclamped Inductive Switching Capability

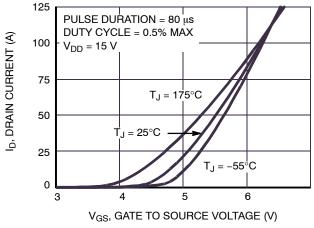


Figure 7. Transfer Characteristics

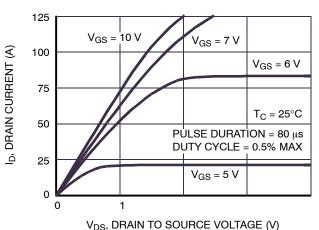


Figure 8. Saturation Characteristics

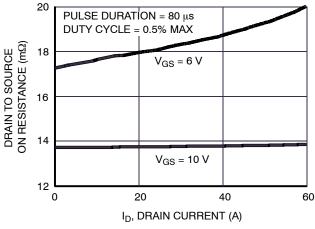


Figure 9. Drain to Source On Resistance vs.

Drain Current

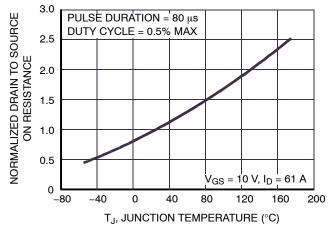


Figure 10. Normalized Drain to Source On Resistance vs. Junction Temperature

$\textbf{TYPICAL CHARACTERISTICS} \ (T_C = 25^{\circ}C, \ unless \ otherwise \ noted) \ (continued)$

V_{GS}, GATE TO SOURCE VOLTAGE (V)

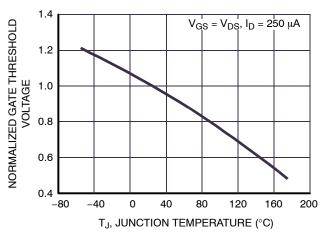


Figure 11. Normalized Gate Threshold Voltage vs.
Junction Temperature

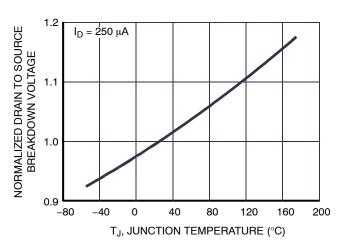


Figure 12. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature

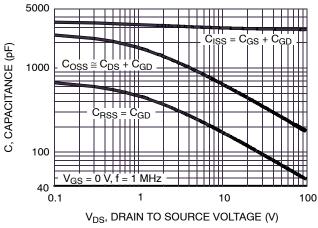


Figure 13. Capacitance vs. Drain to Source Voltage

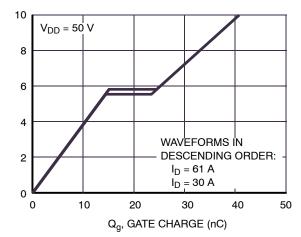


Figure 14. Gate Charge Waveforms for Constant Gate Currents

TEST CIRCUITS AND WAVEFORMS

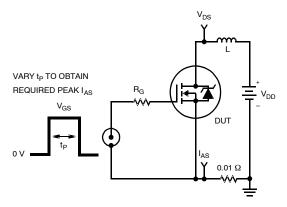


Figure 15. Unclamped Energy Test Circuit

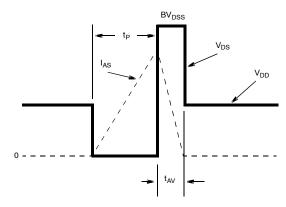


Figure 16. Unclamped Energy Waveforms

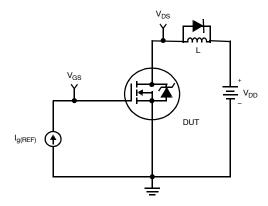


Figure 17. Gate Charge Test Circuit

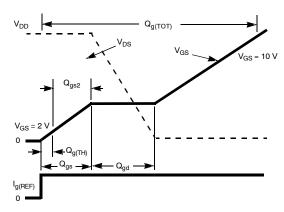


Figure 18. Gate Charge Waveforms

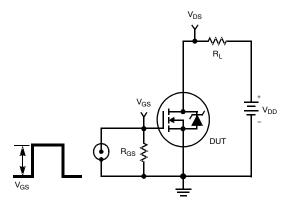


Figure 19. Switching Time Test Circuit



Figure 20. Switching Time Waveforms

THERMAL RESISTANCE VS. MOUNTING PAD AREA

The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

$$P_{DM} = \frac{\left(T_{JM} - T_{A}\right)}{R_{\theta JA}} \tag{eq. 1}$$

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

onsemi provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR–4 board with 1 oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications

can be evaluated using the **onsemi** device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and Equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

$$R_{\theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
 (eq. 2)

Area in Inches Squared

$$R_{\theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
 (eq. 3)

Area in Centimeters Squared

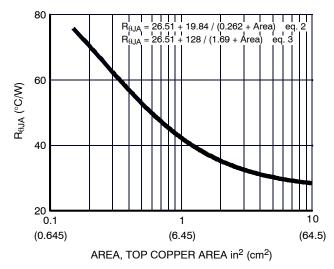


Figure 21. Thermal Resistance vs. Mounting Pad Area

PSPICE ELECTRICAL MODEL

.SUBCKT FDP3652 2 1 3 rev March 2002 Ca 12 8 1.1e-9 Cb 15 14 1.1e-9 Cin 6 8 2.8e-9 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 108.2 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 Lgate 1 9 7.16e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2.29e-9 RLgate 1 9 71.6 RLdrain 2510 RLsource 3 7 22.9 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 Rdrain MOD 5.7e-3 Rgate 9 20 1.06 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 6.5e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*150),7))} .MODEL DbodyMOD D (IS=1.5E-11 N=1.06 RS=2.5e-3 TRS1=2.4e-3 TRS2=1.1e-6 + CJO=1.9e-9 M=5.8e-1 TT=2.5e-8 XTI=3.9) .MODEL DbreakMOD D (RS=2.7e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=7e-10 IS=1e-30 N=10 M=0.58) .MODEL MmedMOD NMOS (VTO=3.6 KP=5.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06) .MODEL MstroMOD NMOS (VTO=4.3 KP=110 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=3 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06e1 RS=.1) .MODEL RbreakMOD RES (TC1=1.05e-3 TC2=1e-6) .MODEL RdrainMOD RES (TC1=1.7e-2 TC2=3.2e-5)

.MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-7)
.MODEL RSourceMOD RES (TC1=1e-3 TC2=1e-6)

.MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.2e-5)

.MODEL RvtempMOD RES (TC1=-3.3e-3 TC2=1.3e-6)

.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8 VOFF=-5)

.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-8)

.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5)

.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1)

.ENDS

NOTE: For further discussion of the PSPICE model, consult *A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options*; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

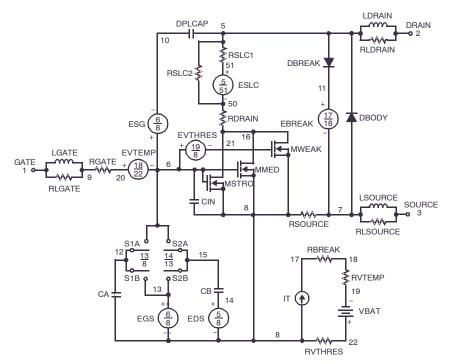


Figure 22.

SABER ELECTRICAL MODEL

```
REV March 2002
template FDP3652 n2,n1,n3
electrical n2,n1,n3
var i iscl
dp..model\ dbodymod = (isl=1.5e-11,nl=1.06,rs=2.5e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.9e-9,m=5.8e-1,tt=2.5e-8,xti=3.9)
dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=7e-10,isl=10e-30,nl=10,m=0.58)
m..model mmedmod = (type= n, vto=3.6, kp=5.5, is=1e-30, tox=1)
m..model mstrongmod = (type= n, vto=4.3, kp=110, is=1e-30, tox=1)
m..model mweakmod = (type= n, vto=3, kp=0.03, is=1e-30, tox=1, rs=.1)
sw vcsp..model s1amod = (ron=1e-5, roff=0.1, von=-8, voff=-5)
sw vcsp..model s1bmod = (ron=1e-5, roff=0.1, von=-5, voff=-8)
sw vcsp..model s2amod = (ron=1e-5, roff=0.1, von=-1, voff=0.5)
sw vcsp..model s2bmod = (ron=1e-5, roff=0.1, von=0.5, voff=-1)
c.ca n12 n8 = 1.1e-9
c.cb n15 n14 = 1.1e-9
c.cin n6 n8 = 2.8e-9
dp.dbody n7 n5 = model = dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 108.2
spe.eds n14 \ n8 \ n5 \ n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 \ n6 \ n18 \ n22 = 1
i.it n8 n17 = 1
1.1gate n1 n9 = 7.16e-9
1.1drain n2 n5 = 1.0e-9
1.1source n3 n7 = 2.29e-9
res.rlgate n1 n9 = 71.6
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 22.9
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=1e-6
res.rdrain n50 n16 = 5.7e-3, tc1=1.7e-2,tc2=3.2e-5
res.rgate n9 \ n20 = 1.06
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-7
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 6.5e-3, tc1=1e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.2e-5
res.rvtemp n18 n19 = 1, tc1=-3.3e-3,tc2=1.3e-6
sw vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw vcsp.s2b n13 n15 n14 n13 = model=s2bmod
```

```
v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 7)) }}
```

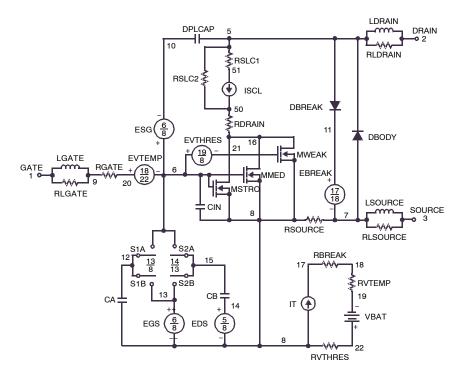


Figure 23.

SPICE THERMAL MODEL

REV 23 March 2002 FDP3652 CTHERM1 TH 6 1e-2 CTHERM2 6 5 1.5e-2 CTHERM3 5 4 2e-2 CTHERM4 4 3 2.1e-2 CTHERM5 3 2 2.2e-2 CTHERM6 2 TL 9e-2 RTHERM1 TH 6 2.7e-2 RTHERM2 6 5 2.8e-2 RTHERM3 5 4 7.8e-2 RTHERM4 4 3 9e-2 RTHERM5 3 2 2.7e-1 RTHERM6 2 TL 2.87e-1

SABER THERMAL MODEL

SABER thermal model FDP3652 template thermal_model th tl thermal_c th, tl ctherm.ctherm1 th 6 = 1e - 2ctherm.ctherm2 65 = 1.5e - 2ctherm.ctherm3 5 4 = 2e - 2ctherm.ctherm4 4 3 = 2.1e-2ctherm.ctherm5 3 2 = 2.2e-2ctherm.ctherm6 2 tl = 9e-2rtherm.rtherm1 th 6 = 2.7e - 2rtherm.rtherm2 6 5 = 2.8e-2rtherm.rtherm354 = 7.8e - 2rtherm.rtherm $4\ 4\ 3 = 9e - 2$ rtherm.rtherm5 3 2 = 2.7e-1rtherm.rtherm6 2 tl =2.87e-1}

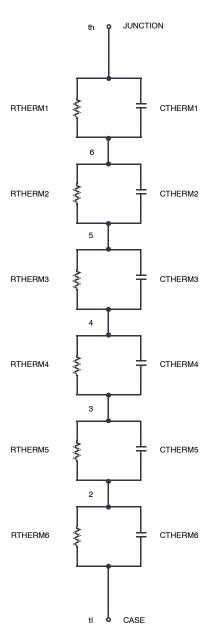
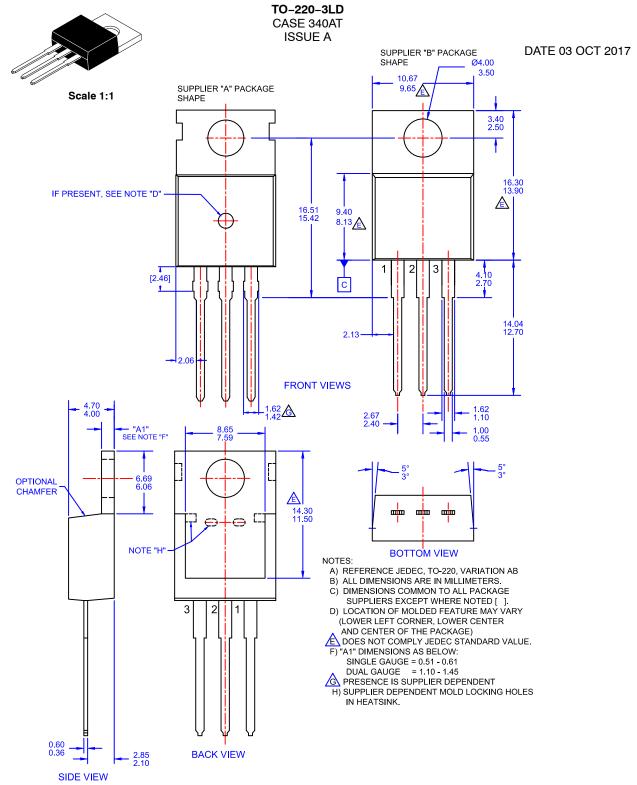
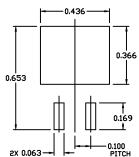



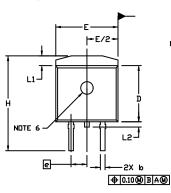
Figure 24.

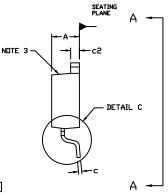

DOCUMENT NUMBER:	: 98AON13818G Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220-3LD		PAGE 1 OF 1

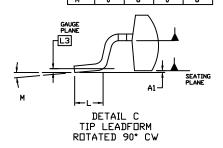
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

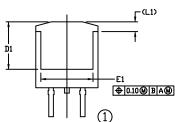
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

DATE 11 MAR 2021

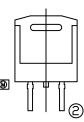

RECOMMENDED MOUNTING FOOTPRINT

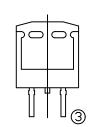

For additional information on our Pb-Free strategy and soldering details, please download the IN Seniconductor Soldering and Mounting Techniques Reference Manual, SILIERRM/D.

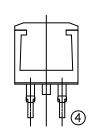

NOTES


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH.
 MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE.
 THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST
 EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INCHES		INCHES MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
С	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245		6.22	
e	0.100 BSC		2.54	BSC
Н	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1		0.066		1.68
L5		0.070		1.78
L3	0.010 BSC		C 0.25 BSC	
м	0+	8*	n•	8.







VIEW A-A

VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XXXXXX = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot

 Y
 = Year

 WW
 = Work Week

 W
 = Week Code (SSG)

 M
 = Month Code (SSG)

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales