Bipolar Transistor

(-)50 V, (-)5 A, Low $\mathrm{V}_{\mathrm{CE}}($ sat $)$, Complementary Dual CPH5

CPH5520

Features

- Composite Type with a PNP Transistor and an NPN Transistor Contained in One Package, Facilitating High-Density Mounting
- Ultrasmall Package Facilitate Miniaturization in End Products. (0.9 mm Mounting Height)
- This is a $\mathrm{Pb}-$ Free Device

Applications

- Relay Drivers, Lamp Drivers, Motor Drivers, Gate Drivers

Specifications

(): PNP

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$		$(-50) 80$	V
Collector-to-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$		$(-50) 50$	V
Emitter-to-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$		$(-) 6$	V
Collector Current	I_{C}		$(-) 2$	A
Collector Current (Pulse)	I_{CP}		$(-) 5$	A
Base Current	I_{B}		$(-) 400$	mA
Collector Dissipation	P_{C}	Mounted on a ceramic board $\left(600 \mathrm{~mm}^{2} \times 0.8 \mathrm{~mm}\right)$ 1unit	0.9	W
Total Power Dissipation	P_{T}	Mounted on a ceramic board $\left(600 \mathrm{~mm}^{2} \times 0.8 \mathrm{~mm}\right)$	1.2	W
Junction Temperature	Tj		150	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1: Collector (NPN TR)
2: Collector (PNP TR)
3: Base (PNP TR)
4: Emitter Common
5: Base (NPN TR)

CPH5

CASE 318BC

MARKING DIAGRAM

ELECTRICAL CONNECTION

ORDERING INFORMATION

Device	Package	Shipping †
CPH5520-TL-E	CPH5 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Ratings			Unit
			Min	Typ	Max	
Collector Cutoff Current	$\mathrm{I}_{\text {cbo }}$	$\mathrm{V}_{\mathrm{CB}}=(-) 40 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{~A}$	-	-	(-)1	$\mu \mathrm{A}$
Emitter Cutoff Current	lebo	$\mathrm{V}_{\mathrm{EB}}=(-) 4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$	-	-	(-)1	$\mu \mathrm{A}$
DC Current Gain	$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\text {CE }}=(-) 2 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=(-) 100 \mathrm{~mA}$	200	-	560	
Gain-Bandwidth Product	f_{T}	$\mathrm{V}_{\text {CE }}=(-) 10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=(-) 300 \mathrm{~mA}$	-	420	-	MHz
Output Capacitance	Cob	$\mathrm{V}_{\mathrm{CB}}=(-) 10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	-	(16)8	-	pF
Collector-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=(-) 1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=(-) 50 \mathrm{~mA}$	-	(-165)130	(-330)260	mV
Base-to-Emitter Saturation Voltage	$\mathrm{V}_{\text {BE }}$ (sat)	$\mathrm{I}_{\mathrm{C}}=(-) 1 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=(-) 50 \mathrm{~mA}$		(-)0.9	(-)1.2	V
Collector-to-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }}$ сво	$\mathrm{I}_{\mathrm{C}}=(-) 10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0 \mathrm{~A}$	(-50)80	-	-	V
Collector-to-Emitter Breakdown Voltage	$\mathrm{V}_{\text {(BR)CEO }}$	$\mathrm{I}_{\mathrm{C}}=(-) 1 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=\infty$	(-50)50	-	-	V
Emitter-to-Base Breakdown Voltage	$\mathrm{V}_{\text {(BR) }{ }^{\text {EBO }}}$	$\mathrm{I}_{\mathrm{E}}=(-) 10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0 \mathrm{~A}$	(-)6	-	-	V
Turn-On Time	$\mathrm{t}_{\text {on }}$	See specified Test Circuit	-	(35)35	-	ns
Storage Time	$\mathrm{t}_{\text {stg }}$		-	(200)330	-	ns
Fall Time	t_{f}		-	(24)40	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$\mathrm{I}_{\mathrm{C}}=10 \mathrm{I}_{\mathrm{B} 1}=-10 \mathrm{I}_{\mathrm{B} 2}=0.7 \mathrm{~A}$
For PNP, the polarity is reversed.
Figure 1. Switching Time Test Circuit

Figure 2. IC - V_{CE} (PNP)

V_{BE}, Base-to-Emitter Voltage (V)
Figure 4. $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{BE}}$ (PNP)

Figure 6. $\mathrm{h}_{\mathrm{FE}}-\mathrm{I}_{\mathrm{C}}$ (PNP)

Figure 3. IC - V_{CE} (NPN)

Figure 5. $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{BE}}$ (NPN)

Figure 7. $\mathrm{h}_{\mathrm{FE}}-\mathrm{I}_{\mathrm{C}}$ (NPN)

Figure 8. $\mathrm{f}_{\mathrm{T}}-\mathrm{I}_{\mathrm{C}}$ (PNP)

Figure 10. Cob - V_{CB} (PNP)

Figure 12. V_{CE} (sat) $-\mathrm{I}_{\mathrm{C}}$ (PNP)

Figure 9. $\mathrm{f}_{\mathrm{T}}-\mathrm{I}_{\mathrm{C}}$ (NPN)

Figure 11. Cob - V_{CB} (NPN)

Figure 13. $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})-\mathrm{I}_{\mathrm{C}}$ (NPN)

Figure 14. $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})-\mathrm{I}_{\mathrm{C}}$ (PNP)

Figure 16. $\mathrm{V}_{\mathrm{BE}}($ sat $)-\mathrm{I}_{\mathrm{C}}$ (PNP)

V_{CE}, Collector-to-Emitter Voltage (V)
Figure 18. ASO (PNP/NPN)

I_{C}, Collector Current (A)
Figure 15. $\mathrm{V}_{\mathrm{CE}}($ sat $)-\mathrm{I}_{\mathrm{C}}(\mathrm{NPN})$

Figure 17. $\mathrm{V}_{\mathrm{BE}}($ sat $)-\mathrm{I}_{\mathrm{C}}$ (NPN)

Ta, Ambient Temperature (${ }^{\circ} \mathrm{C}$)
Figure 19. $\mathrm{P}_{\mathrm{C}}-\mathrm{Ta}$ (PNP/NPN)

CPH5

CASE 318BC
ISSUE O
DATE 30 NOV 2011

| DOCUMENT NUMBER: | 98AON65439E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | CPH5 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

