

IGBT - Power, Single N-Channel, Field Stop VII (FS7), SCR, Power TO247-3L

1200 V, 1.42 V, 40 A

AFGHL40T120RW

Description

Using the novel field stop 7th generation IGBT technology in TO247 3-lead package, this device offers the optimum performance with low on state voltage and minimal switching losses for both hard and soft switching topologies in automotive applications.

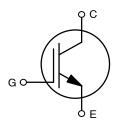
Features

- Extremely Efficient Trench with Field Stop Technology
- Maximum Junction Temperature T_J =175°C
- Short Circuit Rated / Low Saturation Voltage
- Fast Switching / Tightened Parameter Distribution
- AEC-Q101 Qualified, PPAP Available Upon Request
- This Device is Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

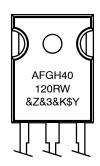
- Automotive E-compressor
- Automotive EV PTC Heater
- OBC

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Pai	Symbol	Value	Unit	
Collector-to-Emitter V	V_{CE}	1200	V	
Gate-to-Emitter Volta	V_{GE}	±20		
Transient Gate-to-Em		±30		
Collector Current $T_C = 25^{\circ}C$		I _C	80	Α
	T _C = 100°C		40	
Power Dissipation	T _C = 25°C	P_{D}	576	W
	T _C = 100°C		288	
Pulsed Collector $T_C = 25^{\circ}C$, Current $t_p = 10 \mu s$ (Note 1)		I _{CM}	120	Α
Short Circuit Withstand V _{GE} = 15 V, V _{CC} = 800	T _{SC}	6	μs	
Operating Junction an Range	T _J , T _{stg}	-55 to +175	°C	
Lead Temperature for	TL	260	1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


BV _{CES}	V _{CE(sat)} TYP	I _C MAX
1200 V	1.42 V	40 A

PIN CONNECTIONS

MARKING DIAGRAM

AFGH40120RW = Specific Device Code
&Z = Assembly Plant Code
&3 = 3-Digit Date Code
&K = 2-Digit Lot Traceability Code
\$Y = onsemi Logo

ORDERING INFORMATION

Device	Package	Shipping
AFGHL40T120RW	TO-247-3L (Pb-Free)	30 Units / Tube

^{1.} Repetitive rating: Pulse width limited by max. junction temperature

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case for IGBT	$R_{ heta JC}$	0.26	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS				-		•
Collector-to-Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0 V, I _C = 5 mA	1200	-	-	V
Zero Gate Voltage Collector Current	I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	-	-	40	μΑ
Gate-to-Emitter Leakage Current	I _{GES}	V _{GE} = ±20 V, V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
Gate-to-Emitter Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	5.03	5.93	6.83	V
Collector-to-Emitter Saturation	V _{CE(sat)}	V _{GE} = 15 V, I _C = 40 A, T _J = 25°C	-	1.42	1.75	V
Voltage		V _{GE} = 15 V, I _C = 40 A, T _J = 175°C	-	1.68	-	1
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{IES}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	4717	-	pF
Output Capacitance	C _{OES}		-	144	-	
Reverse Transfer Capacitance	C _{RES}		-	24.5	-	
Total Gate Charge	Q_{G}	V _{CE} = 600 V, V _{GE} = 15 V, I _C = 40 A	-	171	-	nC
Gate-to-Emitter Charge	Q_{GE}		-	42.2	-	
Gate-to-Collector Charge	Q_{GC}		-	73.7	-	
SWITCHING CHARACTERISTICS, IN	DUCTIVE LOA	AD (Note: Si Diode Applied)				
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V	_	50.1	-	ns
Turn-Off Delay Time	t _{d(off)}	$V_{GE} = 0/15 \text{ V}$ $I_{C} = 20 \text{ A}$	_	293	-]
Rise Time	t _r	$R_G = 4.7 \Omega$ $T_{,l} = 25^{\circ}C$	_	30.9	-	
Fall Time	t _f		_	189	-	
Turn-On Switching Loss	E _{on}]	_	1.37	-	mJ
Turn-Off Switching Loss	E _{off}		_	1.35	-	
Total Switching Loss	E _{ts}		-	2.72	-	
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V	_	55.2	-	ns
Turn-Off Delay Time	t _{d(off)}	$V_{GE} = 0/15 \text{ V}$ $I_{C} = 40 \text{ A}$	-	241	-	
Rise Time	t _r	$R_G = 4.7 \Omega$ $T_J = 25^{\circ}C$	-	55.2	-	
Fall Time	t _f		-	122	-	
Turn-On Switching Loss	E _{on}		-	3.68	-	mJ
Turn-Off Switching Loss	E _{off}		-	1.7	-	
Total Switching Loss	E _{ts}]	-	5.38	-	1

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS, INDUCTIVE LOAD (Note: Si Diode Applied)						
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V	-	56	-	ns
Turn-Off Delay Time	t _{d(off)}	$V_{GE} = 0/15 \text{ V}$ $I_{C} = 20 \text{ A}$	=	414	-	1
Rise Time	t _r	R _G = 4.7 Ω T _J = 175°C	=	41.7	-	1
Fall Time	t _f		-	375	-	
Turn-On Switching Loss	E _{on}		-	2.13	-	mJ
Turn-Off Switching Loss	E _{off}		-	2.51	-	
Total Switching Loss	E _{ts}		_	4.64	-	
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V	-	63.1	-	ns
Turn-Off Delay Time	t _{d(off)}	$V_{GE} = 0/15 \text{ V}$ $I_{C} = 40 \text{ A}$ $R_{G} = 4.7 \Omega$ $T_{J} = 175^{\circ}\text{C}$	-	325	-	
Rise Time	t _r		_	71.2	-	
Fall Time	t _f		-	233	-	1
Turn-On Switching Loss	E _{on}		-	5.75	-	mJ
Turn-Off Switching Loss	E _{off}		-	3.03	-	
Total Switching Loss	E _{ts}		_	8.79	-	1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

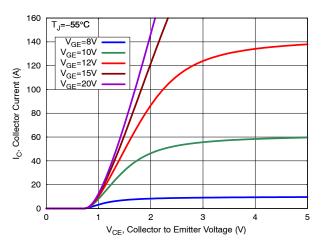


Figure 1. Output Characteristics

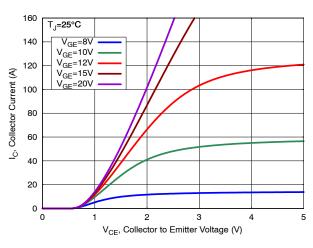


Figure 2. Output Characteristics

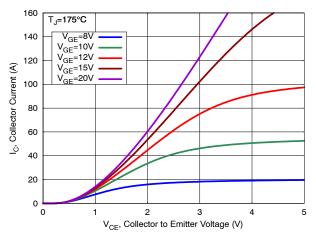


Figure 3. Output Characteristics

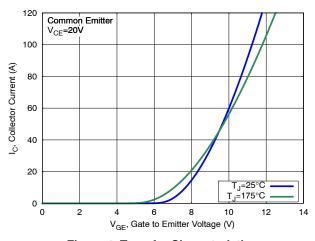


Figure 4. Transfer Characteristics

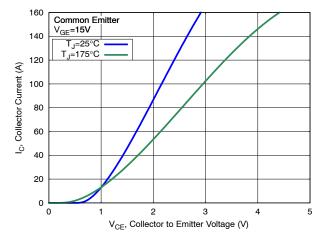


Figure 5. Saturation Characteristics

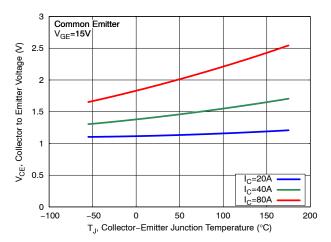


Figure 6. Saturation Voltage vs Junction Temperature

TYPICAL CHARACTERISTICS

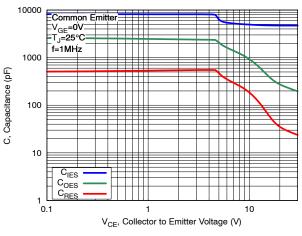


Figure 7. Capacitance Characteristics

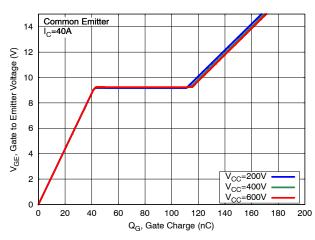


Figure 8. Gate Charge Characteristics

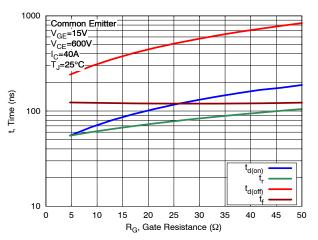


Figure 9. Switching Time vs Gate Resistance



Figure 10. Switching Time vs Gate Resistance

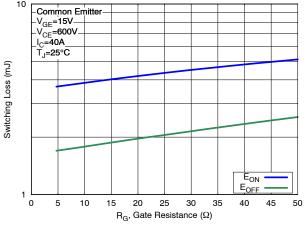


Figure 11. Switching Loss vs Gate Resistance

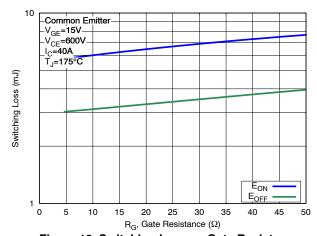


Figure 12. Switching Loss vs Gate Resistance

TYPICAL CHARACTERISTICS

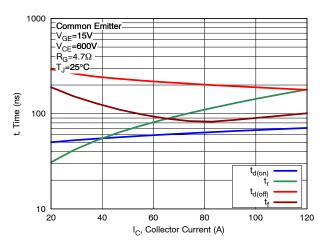
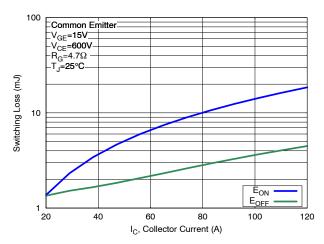



Figure 13. Switching Time vs Collector Current

Figure 14. Switching Time vs Collector Current

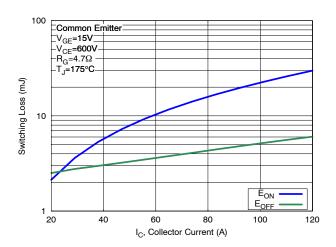


Figure 15. Switching Loss vs Gate Resistance

Figure 16. Switching Loss vs Collector Current

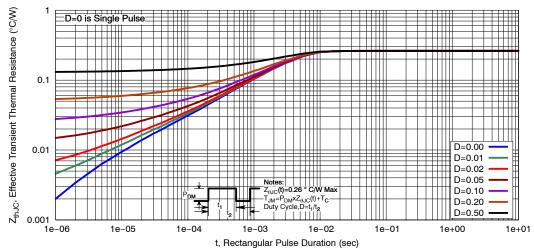
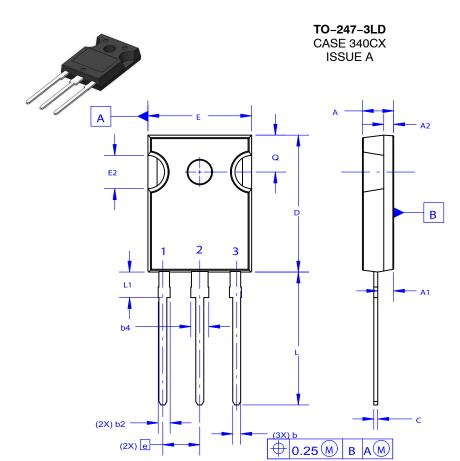
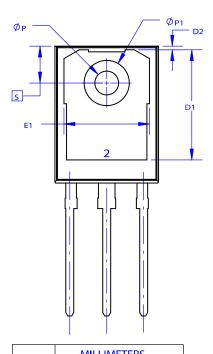
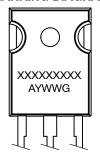




Figure 17. Transient Thermal Impedance of IGBT

DATE 06 JUL 2020



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.

 B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DRAWING CONFORMS TO ASME Y14.5 2009.
- D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
- E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " =", may or may not be present. Some products may not follow the Generic Marking.

DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	4.58	4.70	4.82		
A 1	2.20	2.40	2.60		
A2	1.40	1.50	1.60		
D	20.32	20.57	20.82		
Е	15.37	15.62	15.87		
E2	4.96	5.08	5.20		
е	~	5.56	~		
L	19.75	20.00	20.25		
L1	3.69	3.81	3.93		
ØΡ	3.51	3.58	3.65		
Q	5.34	5.46	5.58		
S	5.34	5.46	5.58		
b	1.17	1.26	1.35		
b2	1.53	1.65	1.77		
b4	2.42	2.54	2.66		
С	0.51	0.61	0.71		
D1	13.08	~	~		
D2	0.51	0.93	1.35		
E1	12.81	~	~		
Ø P 1	6.60	6.80	7.00		

DOCUMENT NUMBER:	98AON93302G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales