Product Overview ## CAT24AA08: EEPROM Serial 8-Kb I²C For complete documentation, see the data sheet. The CAT24AA08 is an 8-kb CMOS Serial EEPROM device internally organized as 1024x8 bits. It features a 16-byte page write buffer and supports 100 kHz, 400 kHz and 1 MHz I C protocols. In contrast to the CAT24C04/24C08, the CAT24AA04/24AA08 have no external address pins, and are therefore suitable in applications that require a single CAT24AA04/08 on the I C bus. ## **Features** - Standard and Fast I²C Protocol Compatible - Supports 1MHz Clock Frequency - 1.7 V to 5.5 V Supply Voltage Range - · 16-Byte Page Write Buffer - · Hardware Write Protection for Entire Memory - Schmitt Triggers and Noise Suppression Filters on I²C Bus Inputs (SCL and SDA) - · Low Power CMOS Technology - 1,000,000 Program/Erase Cycles - · 100 Year Data Retention - Industrial Temperature Range For more features, see the data sheet | Part Electrical Specifications | | | | | | | | | | | | | | | | |--------------------------------|------------------------|--------|--------|-------------|------------------|--|------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------|---------------------------------|---------------|---------------|---------------------| | Product | Compliance | Status | Туре | Densit
y | Organi
zation | Data
Trans
missio
n
Stand
ard | f _{cycle}
Max
(kHz) | t _{ACC}
Max
ns | V _{CC}
Min
(V) | V _{CC}
Max
(V) | I _{standby}
Max
(μΑ) | I _{act}
Max
(mA) | T Min
(°C) | T Max
(°C) | Packa
ge
Type | | CAT24AA08TDI-GT3 | Pb-free
Halide free | Active | Serial | 8 kb | 1k x 8 | I2C | 1000 | - | 1.7 | 5.5 | 1 | 1 | -40 | 85 | TSOT-
23-5 | For more information please contact your local sales support at www.onsemi.com. Created on: 10/19/2018