onsemi

Half-Bridge IGBT Module, Qdual3

1200 V, 800 A

NXH800H120L7QDSG

General Description

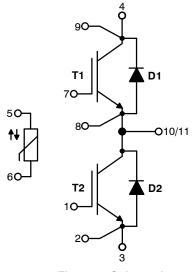
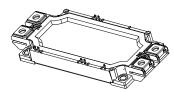
The NXH800H120L7QDSG is a 1200 V 800 A rated half bridge IGBT power module. The integrated Field Stop Trench 7 IGBTs and Gen. 7 diodes provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

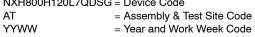
Features

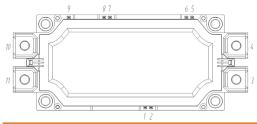
- 1200 V, 800 A 2 in 1 Half Bridge Configuration IGBT Power Module
- Field Stop Trench 7 IGBTs & Gen.7 Diodes
- NTC Thermistor
- Isolated Base Plate
- Solderable Pins
- Low Inductive Layout
- This is a Pb–Free Device

Typical Applications

- Motor Drives
- Servo Drives
- Solar Drives
- Uninterruptible Power Supply Systems (UPS)


Figure 1. Schematic


PIM11, 152.00 x 62.15 x 20.80 CASE 180HT

MARKING DIAGRAM

PIN ASSIGNMENTS

ORDERING INFORMATION

Device	Package	Shipping
NXH800H120L7QDSG	PIM11 (Pb-Free)	8 Units / Blister Tray

PIN DESCRIPTION

Pin	Name	Description
1	G2	T2 Gate
2	E2	T2 Emitter
3	DC-	DC Negative Bus Connection
4	DC+	DC Positive Bus Connection
5	TH2	Thermistor Connection 2
6	TH1	Thermistor Connection 1
7	G1	T1 Gate
8	E1	T1 Emitter
9	CS1	T1 Collector Sensing
10	OUT	Center Point of Half Bridge
11	OUT	Center Point of Half Bridge

Table 1. ABSOLUTE MAXIMUM RATINGS (Tvj = 25°C unless otherwise specified)

Symbol	Parameter	Conditions	Value	Unit
IGBT // Die	ode			
V_{CES}	Collector-Emitter Voltage	Gate-emitter = 0 V	1200	V
V_{GES}	Gate-Emitter Voltage	Collector-emitter = 0 V	±20	V
Ι _C	Continuous Collector Current	$T_{\rm C} = 90^{\circ}{\rm C}$	±800	А
I _{PULSE}	Repetitive Pulsed Collector Current	$T_{C} = 25^{\circ}C, t_{p} = 1 \text{ ms}$	±1600	А
T _{vjop}	Operating Junction Temperature		-40~175	°C
T _{SCWT}	Short Circuit Withstand Time, Non Repetitive	$V_{GE} \le 15$ V, VDC+ ≤ 800 V	8	μs
MODULE				

V _{ISO}	Isolation Voltage	RMS, f = 60 HZ, pins to base plate	3.4	kV
T _{STG}	Storage Temperature		-40~125	°C
M _T	Mounting torque to main terminals (Note 1)	M6 screw	6.0	N∙m
M _H	Mounting torque to heat sink (Note 1)	M5 screw	6.0	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Recommendable value: 3.0 ~ 6.0 N·m

Table 2. THERMAL RESISTANCE CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{thJCQ}	Junction to Case Thermal Resistance	Per IGBT	-	-	0.0498	°C/W
R _{thJCD}	(Note 2)	Per diode	-	-	0.0889	
R _{thCHQ}	Case to Heat-Sink Thermal Resistance	Per IGBT, 1 W/($m \cdot K$) thermal grease	-	0.0282	-	
R _{thCHD}	(Note 2)	Per diode, 1 W/($m \cdot K$) thermal grease	-	0.0342	-	

2. Data from characterization.

Table 3. THERMISTOR CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R ₂₅	Nominal Resistance	T _{NTC} = 25°C	-	5	-	kΩ
R ₁₀₀		T _{NTC} = 100°C	-	493.3	-	Ω
$\Delta R/R$	Deviation on R ₁₀₀	T _{NTC} = 100°C	-5	-	5	%
PD	Power Dissipation – Recommended Limit	0.15 mA, non-self-heating effect	-	0.1	-	mW
	Power Dissipation – Absolute Maximum	5 mA	-	-	34.2	mW
	Power Dissipation Constant		-	1.4	-	mW/°C
B _{25/50}	B-Value	B(25/50), tolerance ±2 %	-	3375	-	К
B _{25/100}	B-Value	B(25/100), tolerance ±2 %	-	3436	-	К

Table 4. ELECTRICAL CH	HARACTERISTICS (T	Γvj = 25°C unless c	therwise specified)
------------------------	-------------------	---------------------	---------------------

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
IGBT	·						
V _{CE(SAT)} (Pin 8–9)	Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 800 A	$T_{vj} = 25^{\circ}C$	-	1.65	2.05	V
V _{CE(SAT)} (Chip)			T _{vj} = 25°C	_	1.44	1.85	
(Chip) (Note 3)			T _{vj} = 125°C	-	1.63	—	
			T _{vj} = 175°C	_	1.75	—	
V _{GE(TH)}	Gate-Emitter Threshold Voltage	$V_{CE} = V_{GE}$, $I_C = 80 \text{ mA}$		4.5	5.5	6.5	V
Qg	Gate Charge	V_{CE} = 600 V, V_{GE} = ±15 V, I	_C = 800 A	_	5.6	-	μC
R _{gint}	Internal Gate Resistor			-	1.5	-	Ω
C _{ies}	Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 1	00 kHz,	_	94.3	—	nF
C _{oes}	Output Capacitance	$T_{vj} = 25^{\circ}C$		_	3.9	-	
C _{res}	Reverse Transfer Capacitance			_	0.58	-	
I _{CES}	Collector-Emitter Cut Off Current	V_{CE} = 1200 V, V_{GE} = 0 V		-	_	100	μA
I _{GES}	Gate-Emitter Leakage Current	V_{CE} = 0 V, V_{GE} = 20 V		_	-	80	nA
t _{don}	Turn-on Delay Time	$V_{CE} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25°C	_	0.37	-	μs
		$R_g = 0.5 \Omega$, $I_C = 800 A$, Inductive load	T _{vj} = 125°C	_	0.41	_	
			T _{vj} = 175°C	_	0.42	-	
t _r	Rise Time		T _{vj} = 25°C	_	0.14	-	μs
			T _{vj} = 125°C	_	0.15	—	
			T _{vj} = 175°C	_	0.15	—	
t _{doff}	Turn-off Delay Time		T _{vj} = 25°C	_	0.4	—	μs
			T _{vj} = 125°C	_	0.42	—	
			T _{vj} = 175°C	_	0.44	—	
t _f	Fall Time		T _{vj} = 25°C	_	0.1	—	μs
			T _{vj} = 125°C	_	0.17	—	
			T _{vj} = 175°C	_	0.21	—	
E _{on}	Turn-on Energy Loss per Pulse		T _{vj} = 25°C	_	87.4	—	mJ
			T _{vj} = 125°C	_	112	—	
			T _{vj} = 175°C	-	132.6	_	
E _{off}	Turn-off Energy Loss per Pulse		T _{vj} = 25°C	-	69.8	_	mJ
			T _{vj} = 125°C	_	90.1	-	
			T _{vj} = 175°C	_	102.0	-	

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
DIODE	·						
V _F (Pin 8–9)	Diode Forward Voltage	V _{GE} = 0 V, I _F = 800 A	$T_{vj} = 25^{\circ}C$	-	1.86	2.25	V
V _F			T _{vj} = 25°C	-	1.64	2.05	
(Chip) (Note 3)			T _{vj} = 125°C	_	1.62	—	
			T _{vj} = 175°C	_	1.57	—	
I _{RRM}	Peak Reverse Recovery Current	$V_{CE} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V},$	T _{vj} = 25°C	-	229	_	А
		$R_g = 0.5 \Omega$, $I_C = 800 A$ Inductive load	T _{vj} = 125°C	-	346	_	
			T _{vj} = 175°C		399	_	
Q _{rr}	Reverse Recovery Charge		T _{vj} = 25°C		37.6	_	μC
			T _{vj} = 125°C		90.5	_	
			T _{vj} = 175°C		126.6	_	
E _{rec}	Reverse Recovery Energy Loss		$T_{vj} = 25^{\circ}C$		14.0	_	mJ
	per Pulse		T _{vj} = 125°C		36.4	_	
			T _{vj} = 175°C		52.6	_	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. This parameter is only guaranteed by design.

Table 5. MODULE AND MECHANICAL CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Max	Unit
CTI	Comparative Tracking Index		>175	-	-	
D _{CR}	Creepage Distance	Terminal to terminal	-	13.0	-	mm
		Terminal to heatsink	-	15.0	-	mm
D _{CL}	Clearance Distance	Terminal to terminal	-	10.0	-	mm
		Terminal to heatsink	-	12.5	-	mm
M _{LS}	Module Stray Inductance		-	20	-	nH
M _W	Module Weight		-	330	-	g

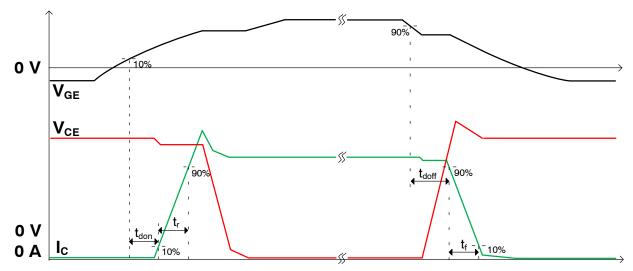
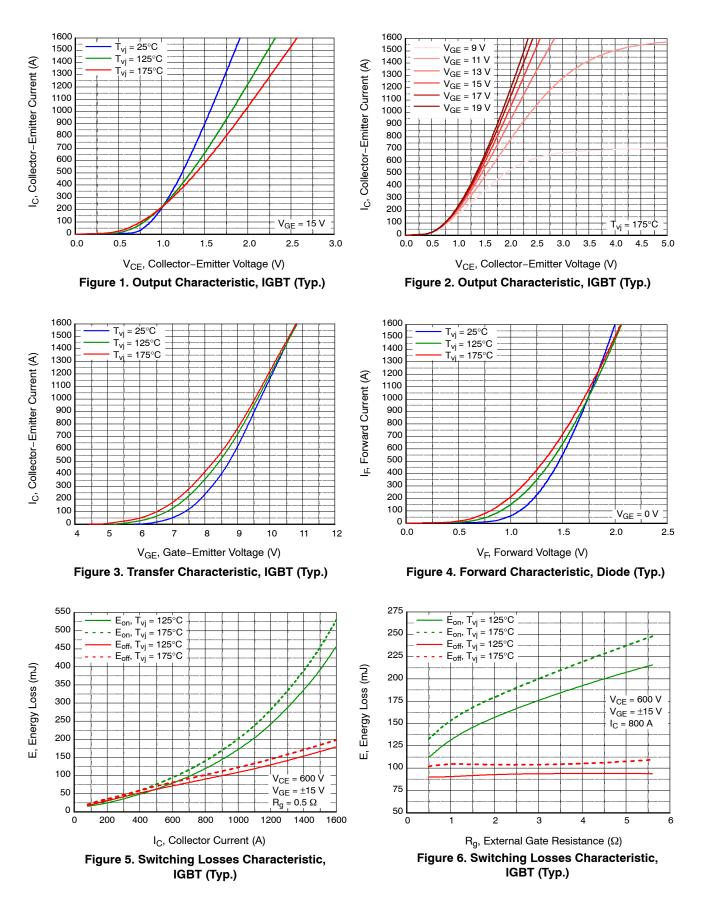
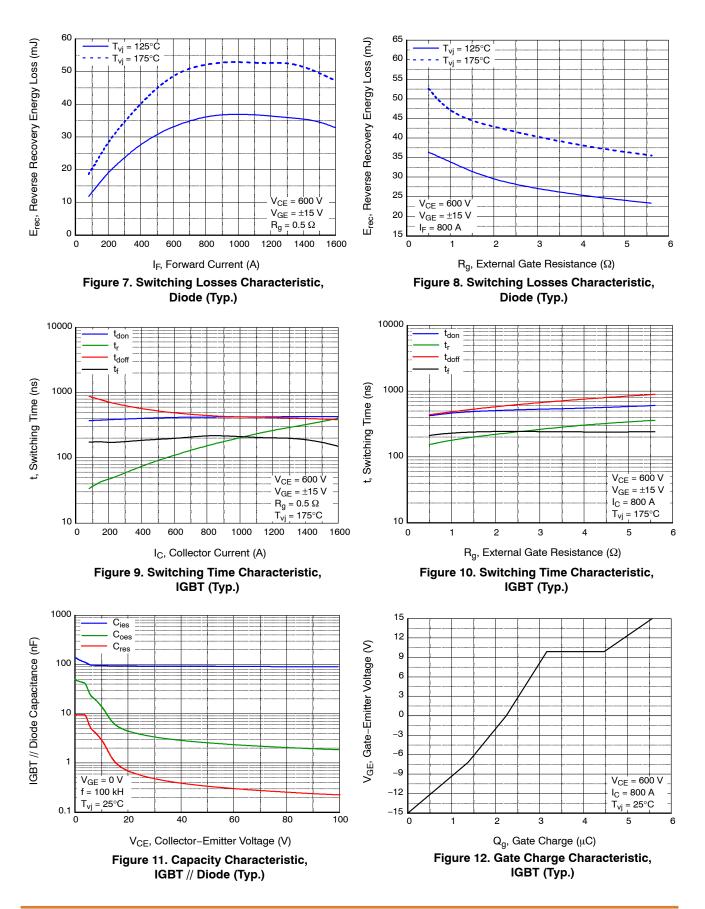
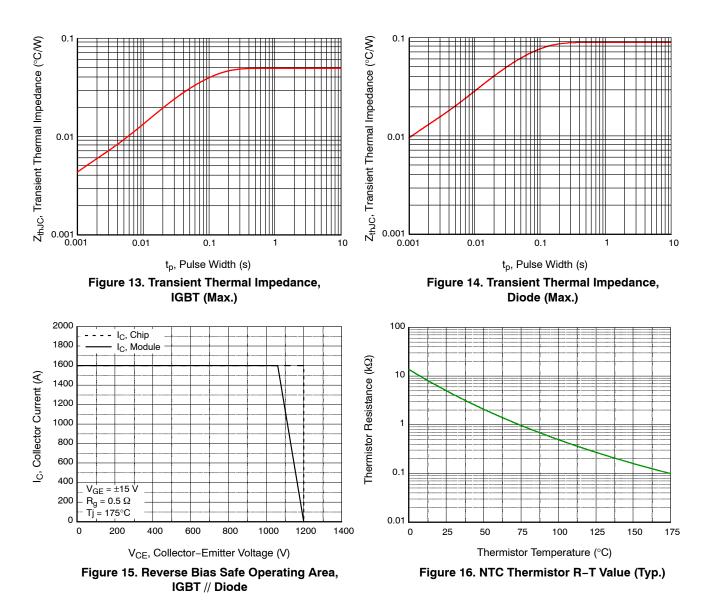
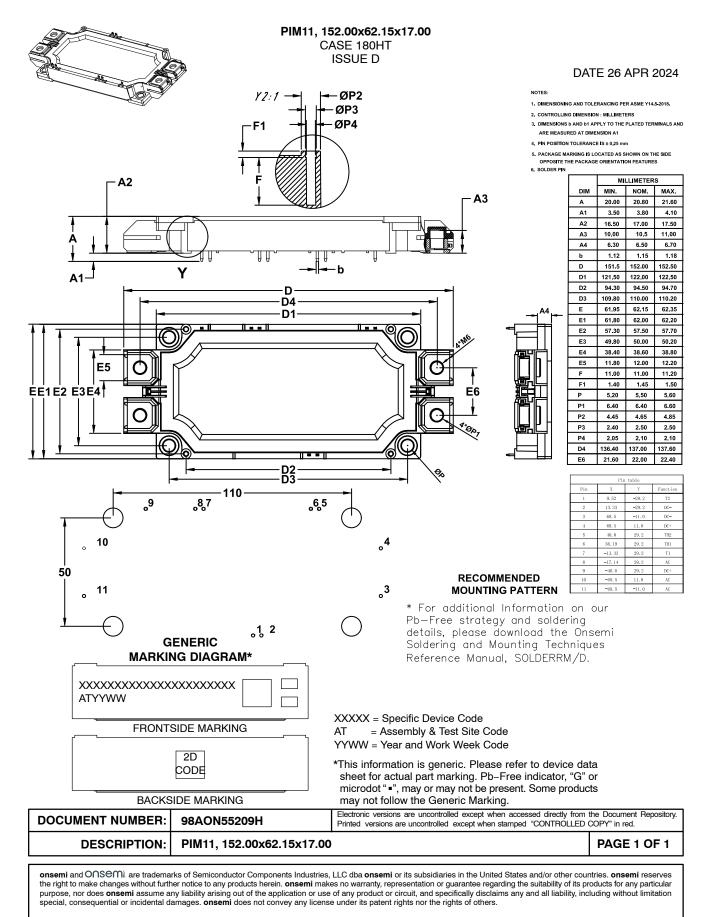




Figure 2. Switching Time Definition


TYPICAL CHARACTERISTICS


TYPICAL CHARACTERISTICS (continued)

TYPICAL CHARACTERISTICS (continued)

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>