Type-C CC with High Speed Digital (HSD) Port Protection Switch

FUSB252

Description

The FUSB252 is an integrated port protection switch for USB Type- C^{\circledR} applications. This product will protect HSD+/and CCx pins when stressed with voltages up to 20 V . Over-Voltage Protection (OVP) at 5.8 V typical will protect the system for Electrical Overstress (EOS) damage. With a fully integrated USB 2.0 switch for HSD+/-, this product can be easily integrated into existing solutions. The HSD switches can pass USB 2.0 signals with bandwidth 1 GHz to maintain signal integrity and eye compliance.

The CC switches have very low RON of 0.3Ω to minimize signal attenuation. The FUSB252 also provides Dead Battery support per the Type-C specification Additional features include Under-Voltage Lockout (UVLO) and thermal shutdown.

Features

- Fully Type-C Port Protection
- Supports USB Type-C Specification 1.2
- $\mathrm{V}_{\mathrm{CC}} 0 \mathrm{~V}-5.5 \mathrm{~V}$
- 20 V DC Protection on V_{CC}
- 16 V DC Protection on HSD Port
- V_{DD} Operating Range, $2.7 \mathrm{~V}-5.5 \mathrm{~V}$
- Current Capability: 1 A
- CC R ON 0.3Ω Typical
- HSD R ${ }_{\mathrm{ON}}: 5 \Omega$ Typical
- Wide -3 db Bandwidth: 1 GHz
- Low Power Operation: $I_{C C}=9 \mu \mathrm{~A}$ Typical
- Dead Battery Support (UFP Support when No Power Applied)
- CC Over-Voltage Protection: Typical $=5.6 \mathrm{~V}$
- This is a $\mathrm{Pb}-$ Free Device

Applications

- Smartphones
- Tablets
- Laptops

UQFN16 $1.8 \times 2.6,0.4 P$

 CASE 523BF

ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of this data sheet.

FUSB252

Figure 1. Typical Application

ORDERING INFORMATION

Part Number	Operating Temperature Range	Package	Top Mark	Shipping \dagger
FUSB252UMX	-40 to $85^{\circ} \mathrm{C}$	16-Lead Ultrathin Molded Leadless Package (UMLP) $1.8 \times 2.6 \mathrm{~mm}$	UZ	$5000 /$ Tape and Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FUSB252
BLOCK DIAGRAM

Figure 2. Block Diagram

REFERENCE SCHEMATIC

Figure 3. Reference Schematic

FUSB252

PIN CONFIGURATIONS

Figure 4. Pin Assignment (Top Through View)

Figure 5. Pin Assignment (Bottom View)

PIN DESCRIPTION

Bump	Name	Type			
POWER INTERFACE 13 VDD Power Power 5,14 GND Ground Ground					(14iption
:---					

USB TYPE-C CONNECTOR INTERFACE INPUT

15,16	VICC1, 2	Input	Type C CC Interface OVP protection input, Connect to connector

USB TYPE-C CONNECTOR INTERFACE OUTPUT

1,2	VOCC1, 2	Output	Type C CC Interface output. Connect to controller

USB HIGH SPEED DATA INTERFACE

3	HSD +	I/O	Common High Speed Digital / USB Data Bus
4	HSD-	I/O	Common High Speed Digital / USB Data Bus
12	HSD1+	I/O	Multiplexed Source Input 1
11	HSD1-	I/O	Multiplexed Source Input 1
10	HSD2+	I/O	Multiplexed Source Input 2
9	HSD2-	I/O	Multiplexed Source Input 2

SIGNAL INTERFACE

7	/OE	I/O	Switch Enable
6	SEL	I/O	Switch Select
8	INTB/FLAGB	Output	OVP Interrupt Flag

FUSB252

Table 1. CC SWITCH TRUTH TABLE CONFIGURATION

$V_{\text {DD }}$				VICc Voltage	CC Switch Configuration
$0 \mathrm{~V}-$ UVLO (Not Valid)	$0 \mathrm{~V}-5.8 \mathrm{~V}$	OFF Dead Battery Rd Inserted			
	5.8 V to 20 V	OFF Dead Battery Rd Inserted			
$2.7 \mathrm{~V}-5.5 \mathrm{~V}$ (Valid)	$0 \mathrm{~V}-5.8 \mathrm{~V}$	On			
	5.8 V to 20 V	OFF (OVP)			

Table 2. CC SWITCH TRUTH TABLE CONFIGURATION

$/$ OE	SEL	VDD	HSD+ / HSD-	CC
1	0	Not Valid	$\times($ Open/High-Z $)$	Dead Battery
0	0	Not Valid	$\times($ Open/High-Z $)$	Dead Battery
1	X	Valid	$\times($ Open/High-Z $)$	On
0	0	Valid	HSD1+ / HSD1-	On
0	1	Valid	HSD2+ / HSD2-	On

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Min	Max	Unit
VVDD	Supply Voltage from V ${ }_{\text {DD }}$			-0.5	12.0	V
$\mathrm{V}_{\text {VICC }}$	$V_{\text {ICCx }}$, to GND			-0.5	24	V
$\mathrm{V}_{\text {SW }}$	$\mathrm{V}_{\text {HSD } \pm}$, to GND			-5	16	V
$\mathrm{V}_{\text {Occ }}, \mathrm{V}_{\text {SW }}$	$\mathrm{V}_{\text {OCCx }} \mathrm{V}_{\text {HSDx }}$ to GND			-0.5	6	V
$\mathrm{V}_{\text {CONTROL }}$	DC Input Voltage (S, /OE)			-0.5	$\mathrm{V}_{\text {VDD }}$	V
ICCsw	DC CC Switch Current				1.25	A
lusbsw	DC Output Current				100	mA
IIK^{\prime}	DC Input Diode Current			-50		mA
T Storage	Storage Temperature Range			-65	+150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum Junction Temperature				+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 seconds)				+260	${ }^{\circ} \mathrm{C}$
ESD	IEC 61000-4-2 System ESD	Connector Pins $\left(\mathrm{V}_{\mathrm{VDD}}, \mathrm{V}_{\mathrm{ICCx}}, \mathrm{V}_{\mathrm{HSD} \pm}\right)$	Air Gap	15		kV
			Contact	8		
	IEC 61000-4-5 Surge ESD	$\mathrm{V}_{\text {ICCx }} \text { to GND }$		-24	24	V
		$\mathrm{V}_{\mathrm{HSD} \pm} \text { to GND }$		-16	16	V
	Human Body Model, JEDEC JESD22-A114	Power to GND		4		kV
		$\begin{aligned} & \text { External Pins to GND } \\ & \left(\mathrm{V}_{\text {HSD } \pm}, \mathrm{V}_{\text {ICCx }}\right) \end{aligned}$				
		$\left.\begin{array}{l} \text { System Side Pin } \\ \left(V_{\text {HSDx } \pm}, V_{\text {OCCx }}, ~ S, ~ / O E, ~ F L A G B ~\right. \end{array}\right)$		2		
	Charged Device Model, JEDEC LESD22-C101	All Pins		1		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{VDD}}$	Supply Voltage	2.7	4.2	5.5	V
$V_{\text {ICC }}$	Type C Input Voltage	0		5.5	V
$\mathrm{V}_{\text {OCC }}$	Type C Output Voltage	0		5.5	V
ICCSW	Maximum CC Switch Current			1	A
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage (SEL, /OE)	-0.5		$\mathrm{V}_{\mathrm{VDD}}$	V
$V_{\text {SW }}$	HSD/USB Switch I/O Voltage	-0.5		4.5	V
T_{A}	Operating Temperature	-40		+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS (Unless otherwise specified: Recommended T_{A} and T_{J} temperature ranges. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}$ unless otherwise specified.)

	Characteristic	V D (V)	Conditions	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
Symbol				Min	Typ	Max	

BASIC OPERATION DEVICE

I_{CC}	Quiescent Supply Current	2.7 to 5.5	/OE $=\mathrm{L}, \mathrm{l}$ IOUT $=0$	9	$\mu \mathrm{A}$
			$/ \mathrm{OE}=\mathrm{H}, \mathrm{l}$ IOUT $=0$	9	
IofF	Power-Off Leakage Current	0		3	$\mu \mathrm{A}$

BASIC OPERATION CC SWITCH

$\mathrm{I}_{\text {SD(DB) }}$	Dead Battery Supply Current	0 to UVLO	Dead Battery State Supply Current		15		$\mu \mathrm{A}$
R ON	CC Path On Resistance	2.7 to 5.5	$\mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}$		350	480	$\mathrm{m} \Omega$
Vov_trip	Input OVP Lockout	2.7 to 5.5	$V_{\text {ICC }}$ Rising		5.65	6.20	V
			$V_{\text {ICC }}$ Falling		5.3		
Vov_HYS	Input OVP Hysteresis	2.7 to 5.5			0.35		V
V UVLO	Under-Voltage Lockout	2.7 to 5.5	V_{DD} Rising		2.55	2.70	V
			$V_{\text {DD }}$ Falling		2.5		
TSD	Thermal Shutdown (Note 1)		Shutdown Threshold		150		${ }^{\circ} \mathrm{C}$
			Return from Shutdown		130		
			Hysteresis		20		
Rd	Dead Battery Pull-Down Resistance	0 to UVLO	Dead Battery Resistance	4.08	5.10	6.12	k Ω
			Voltage on Pin	0.25		2.6	V

BASIC OPERATION HSD SWITCH

Vov_TRIP	Input OVP Lockout	2.7 to 5.5	$\mathrm{V}_{\text {HSD } \pm \text { Rising }}$		4.4	5.0	V
			$\mathrm{V}_{\text {HSD } \pm}$ Falling		4.1		
Vov_HYS	Input OVP Hysteresis	2.7 to 5.5			0.3		V
VUV_TRIP	Input Under-Voltage Lockout	2.7 to 5.5			-1.2		V
V_{IH}	Input Voltage High	2.7 to 5.5		1.3			V
V_{IL}	Input Voltage Low	2.7 to 5.5				0.5	V
I_{N}	Control Input Leakage	2.7 to 5.5	$\mathrm{V}_{\text {SW }}=0$ to V_{DD}		0.1		$\mu \mathrm{A}$
Ioz	Off State Leakage	4.2	$0 \leq \mathrm{HSDn} \leq 3.6 \mathrm{~V}$		2		$\mu \mathrm{A}$
		4.2	$$		100		nA
R ${ }_{\text {ON }}$	HS Switch On Resistance	4.2	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$		5		Ω
$\Delta \mathrm{R}_{\text {ON }}$	HS Delta R ${ }_{\text {ON }}$	4.2	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$		0.1		Ω

1. Guaranteed by characterization, not production tested.

AC CHARACTERISTICS (Unless otherwise specified: Recommended T_{A} and T_{J} temperature ranges. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=3.8 \mathrm{~V}$ unless otherwise specified.)

	Characteristic	$\mathrm{V}_{\mathrm{DD}}(\mathrm{V})$	Conditions	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			Unit
Symbol				Min	Typ	Max	

CC SWITCH TIMING PARAMETER

tovP	Response Time (Note 2)	2.7 to 5.5	IOUT $=0.2 \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$, $\mathrm{V}_{\text {ICCx }} 5 \mathrm{~V}$ to 6 V	0.5	1.0	$\mu \mathrm{~s}$	
ton	Turn-On Time		V_{DD} Rising 2 V to 3 V		25		ms
$\mathrm{~T}_{\text {MBB }}$	Make-Before-Break	2.7 to 5.5	$\mathrm{~V}_{\mathrm{DD}}$ Rising 2 V to 3 V		600		ns

CC SWITCH CAPACITANCE

C_{ON}	Switch Path On Capacitance (Note 2)	2.7 to 5.5			100	

CC SWITCH BANDWIDTH

BW	PD Traffic Bandwidth (Note 2)	2.7 to 5.5	$R_{L}=50 \Omega, C_{L}=200 \mathrm{pF}$		25		MHz

HSD SWITCH TIMING PARAMETER

tovp	Response Time (Note 2)	2.7 to 5.5	IOUT $=0.2 \mathrm{~A}, \mathrm{~V}_{\mathrm{D} \pm} 4 \mathrm{~V}$ to 5 V	0.5	1.0	$\mu \mathrm{s}$
ton	Turn-On Time, /OE to Output (Note 2)	2.7 to 5.5	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \end{aligned}$	25		ms
tofF	Turn-Off Time, /OE to Output (Note 2)	2.7 to 5.5	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \end{aligned}$	100	400	ns
$\mathrm{t}_{\text {PD }}$	Propagation Delay (Note 2)	2.7 to 5.5	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$	0.25		ns
$\mathrm{T}_{\text {BBM }}$	Break-Before-Make (Note 2)	2.7 to 5.5	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \\ & V_{S W x}=0.8 \mathrm{~V} S E L=H \leftrightarrow L \end{aligned}$	100		$\mu \mathrm{S}$
$\mathrm{O}_{\text {IRR }}$	Off Isolation	2.7 to 5.5	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$	-25		dB
Xtalk	Non-Adjacent Channel Crosstalk	2.7 to 5.5	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$	-40		dB

HSD SWITCH CAPACITANCE

C_{IN}	Control Pin Input Capacitance (Note 2)	0		1.5	pF
C_{ON}	$\mathrm{HSD}+/ \mathrm{HSD}-$ On Capacitance (Note 2)	2.7 to 5.5	$/ \mathrm{OE}=\mathrm{L}, \mathrm{f}=240 \mathrm{MHz}$		4
$\mathrm{C}_{\mathrm{OFF}}$	HSD1x / HSD2x Off Capacitance (Note 2)	2.7 to 5.5	$/ \mathrm{OE}=\mathrm{H}$	pF	

USB SWITCH BANDWIDTH

BW	-3 db Bandwidth (Note 2)	2.7 to 5.5	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		1400		MHz
	2.7 to 5.5	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		560			

USB HIGH-SPEED-RELATED

$\mathrm{t}_{\text {SK(}(P)}$	Skew of Opposite Transitions of the Same Output (Note 2)	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$		25		ps
t_{J}	Total Jitter (Note 2)		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}(10-90 \%)$ at $480 \mathrm{Mbps}\left(\mathrm{PRBS}=2^{15}-1\right)$	200		ps

2. Guaranteed by characterization, not production tested.

OPERATION AND APPLICATION DESCRIPTION

Out of Spec Surge/Spike Voltage due to Hot Plug

The FUSB252 protects end systems against 20 V DC on the CC pin, in cases where the FUSB252 is tested to mimic a hot plug event, a fully charged cable connected to a power supply set to 20 V is used to zap the VICC pins of the device. In these cases, the inductance of the cable causes voltage spikes that are higher than the absolute maximum ratings of the of the VICC pins. These voltages can cause damage to the VOCC pins. This scenario does not occur in normal usage. The Type-C specification prevents the plug from having 20 V on VBUS from a PD source prior to a PD contract being completed. When the 20 V potential is on VBUS and shorted to the CC pin, it causes a detach and the voltage spikes are less likely to occur. The following reference circuit is required when the application calls for additional protection to protect against such event as hot plug.

Application Specific Schematic

- Place a 5 V to 6 V rated Zener TVS diode such as (CZRF52C5V6 or CD1005-Z5V1) on the VOCC pin, and a 5Ω resistor to device ground to prevent the FUSB252 from being damaged during these tests. With this additional protection if is also important to select the right external VICC IEC TVS for the best overall performance.
- Without the additional protection the device by itself can withstand up to 9 V under the same hot plug condition.

Figure 6. Reference Schematic

Over-Voltage Protection

When over-voltage event is detected, device will activate OVP to shutdown the switch within t_{OVP}, as well as signal the FLAGB to indicate there is OV event to the system.

Fault Reporting

Upon the detection of an over-voltage event, the INTB/FLAGB signals the fault by activating LOW.

Type-C Solution Reference

Figure 7. Example of Type-C Solution Reference (SBU)

Figure 8. Example of Type-C Solution Reference (USB)

TEST DIAGRAMS

$$
\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{ON}}
$$

Figure 9. On Resistance

NOTE: $\quad R_{L}, R_{S}$, and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance.

Figure 11. AC Test Circuit Load

Figure 13. Propagation Delay ($\mathrm{t}_{\mathrm{R}} \mathrm{t}_{\mathrm{F}}-\mathbf{5 0 0} \mathrm{ps}$)

NOTE: Each switch port is tested separately.

Figure 10. Off Leakage

Figure 12. Turn-On / Turn-Off Waveforms

Figure 14. Intra-Pair Skew Test $\mathbf{t}_{\text {SK(P) }}$

TEST DIAGRAMS (continued)

Figure 15. Break-Before-Make Interval Timing

NOTE: $\quad R_{S}$ and R_{T}, are functions of the application environment (see AC Tables for specific values)

Off isolation $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$
NOTE: $\quad R_{S}$ and R_{T}, are functions of the application environment (see AC Tables for specific values)

Figure 16. Bandwidth
Figure 17. Channel Off Isolation

Figure 18. Non-Adjacent Channel-to-Channel Crosstalk

Figure 19. Channel Off Capacitance

Figure 20. Channel On Capacitance

FUSB252

USB, USB-C, USB Type-C and the USB logos are registered trademarks of USB Implementers Forum, Inc. onsemi is licensed by the Philips Corporation to carry the $\mathrm{I}^{2} \mathrm{C}$ bus protocol.

SIDE VIEW

BOTTOM VIEW

UQFN16 1.80×2.60×0.50, 0.40P
CASE 523BF
ISSUE A
DATE 06 MAY 2024
NOTES:

1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-2018.
2. ALL DIMENSIONS ARE IN MILLIMETERS, DEGREES IN ANGLE.
3. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.
4. TERMINAL SHAPE MAY VARY ACCORDING TO PACKAGE SUPPLIER, SEE TERMINAL SHAPE VARIANTS.

DIM	MILLIMETERS		
	MIN	NOM	MAX
A	0.45	0.50	0.55
A1	0.00	---	0.05
A3	0.10	0.15	0.20
b	0.15	0.20	0.25
D	1.80 BSC		
E	2.60 BSC		
e	0.40 BSC		
L	0.35	0.40	0.45
L4	0.45	0.50	0.55
ToLERANCES FOR FEATURE CONTROL FRAME			
aaa	0.05		
bbb	0.10		
ccc	0.10		
ddd	0.05		
eee	0.05		

RECOMMENDED MOUNTING FOOTPRINT* *FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON13709G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UQFN16 1.80x2.60x0.50, 0.40P | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:
Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support
For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

