

JN Semiconductor®

To kara more about Old Semiconductor, please visit our website at

Please note. As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FAN7387 Self-Oscillated, High-Voltage Gate Driver

Features

- Internal Clock Using RCT
- External Sync Function Using RCT
- Dead Time Control Using Resistor
- Shut Down (Disable Mode)
- Internal Shunt Regulator
- UVLO Function, High and Low Side

Applications

- Half-Bridge Inverter
- **SMPS**
- ENTATIVE FO Ballast Solution for I h-Intensity Lucharge (HID) Lamp
- Ballast for uoro

Description

The FAN7387 is a mpi ser of IC for common half-SMI ar pallas for luorescent and bridge inverte HID lamp. The AN7 7 has an oscillating circuit using a capac tor. rnal sist

e i que. variation is very stable across a wide te per vre range. The FAN7337 has an external pin for ad-time control and shortown. Using this resistor, the designer can choose the optimum dead time to educe power loss on switching devices, such as transistors and MCSFETs.

8-SOP

Ord ...g Information

Part Number	Package	Operating Temperature	Packing Method
FAN7287MX ⁽¹⁾	402.8	-40 to +125°C	Tape & Reel

Note:

These device passed wave soldering test by JESD22A-111.

Typical Applications Diagrams

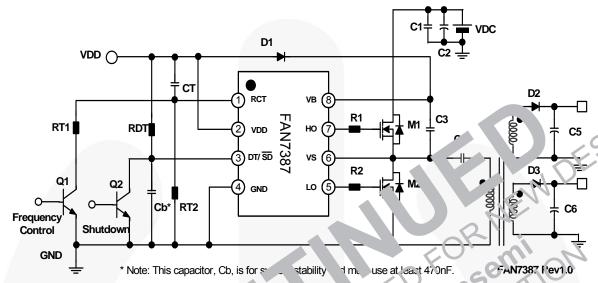


Figure 1. Typical Applicat. 1 Circl for SMPS (Self Oscillation, Method)

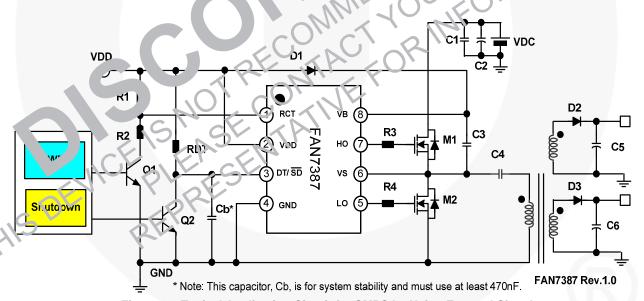


Figure 2. Typical Application Circuit for SMPS by Using External Signal

Typical Application Diagrams (Continued)

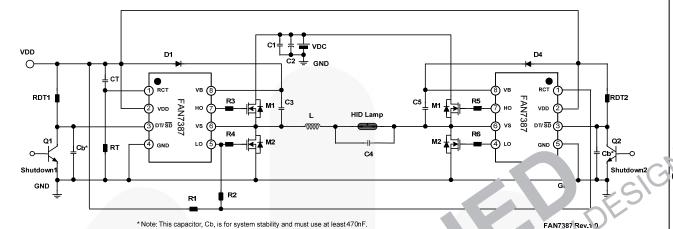


Figure 3. Typical Application Circuit for Full-idge \ nve

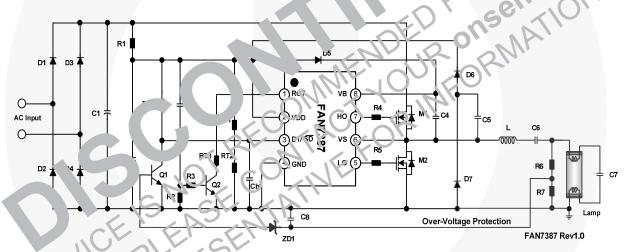


Figure 4. Typical Application Circuit for Fluorescent Lamp Ballast

Internal Block Diagram

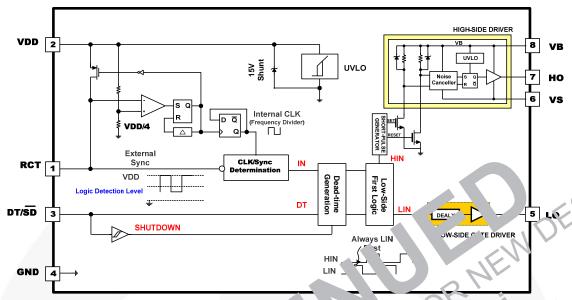


Figure 5. Functiona 3lo. Dia

Pin Configuration

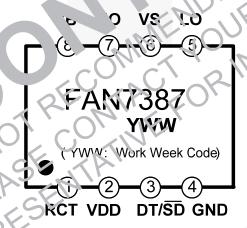


Figure 6. Pin Configurations (Top View)

Pin Definitions

*			
Pin#	Name	Description	
1	RCT	Oscillator frequency set resistor and capacitor.	
2	VDD	Supply Voltage.	
3	DT/SD	d-time control and shutdown (active LOW).	
4	GND	gnal Ground.	
5	LO	w-Side Output.	
6	VS	igh-Side floating supply return.	
7	НО	High-Side output.	
8	VB	High-Side floating supply.	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. T_A=25°C unless otherwise specified.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{B}	High-Side Floating Supply Voltage	-0.3		625.0	V
Vs	High-Side Offset Voltage	-0.3		600.0	V
V_{RCT}	RCT Pins Input Voltage			V_{CL}	V
I _{CL}	Clamping current level ⁽²⁾			25	mA
dV _S /dt	Allowable Offset Voltage Slew Rate		50		V/ns
T _A	Operating Temperature Range	-40		+ 5	°C
T _{STG}	Storage Temperature Range	-65		.ó0	°C
P _D	Power Dissipation		J.625	11.	W
Θ_{JA}	Thermal Resistance (Junction-to-Air)		7.0	11/1	°C/W

Note:

2. Do not supply a low-impedance voltage source to the internal opin. Zeno ode between the GND and the VDD pin of this device.

Recommended Operating Patin, >

The Recommended Operating C ditions aboutefines the conditions for actual device operation. Recommended operating conditions are specified a ensure optimal performance to the datashed specifications. Fairchild does not recommend exceeding the roundest individuals absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit.
V _B	ำ	V _S +11	V _S +14	V
V _S	Hir Side Offset Voltage	6-V _{DD}	600	V
V _L	Low-Side Supply Voltage	11	14	V
V _{HO}	High-Side (HC) Output Voltage	GND	V_{DD}	V
V-3	Low-Side ('-0) Outrui Voltage	GND	V_{DD}	V
V _{IE}	Logic '1' input Voltage of RCT	(3/4 V _{DD})+1		V
VL	Logic "0" երբու Voltage of RCT		(3/5 V _{DD})-1	V
G R _T	Timir. Resistor Value of RCT	2		kΩ
Ст	Timing Capacitor Value of RCT	100		pF
T _A	Ambient Temperature	-40	+125	°C

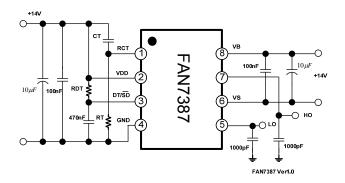
Electrical Characteristics

 $V_{BIAS} \ (V_{DD}, \ V_B \ -V_S) = 14.0 \ V, \ C_L = 1 \ nF, \ R_T = 50 \ k\Omega \ and \ C_T = 330 \ pF \ and \ T_A = 25^{\circ}C, \ unless \ otherwise \ specified.$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Low-Sid	e Supply Characteristics (V _{DD})					
VDD _{UV+}	V _{DD} Supply Under-Voltage Positive-Going Threshold	V _{DD} Increasing	9.50	11.00	12.50	V
VDD _{UV-}	V _{DD} Supply Under-Voltage Negative-Going Threshold	V _{DD} Decreasing	7.5	9.0	10.5	V
VDD _{UVH}	V _{DD} Supply Under-Voltage Lockout Hysteresis			2		V
V _{CL}	Supply Camping Voltage	I _{DD} =10 mA	14.8	15.4		V
I_{QDD}	Low-Side Quiescent Supply Current	R _{DT} =100 kΩ			500	μΑ
I _{ST}	Startup Supply Current	V _{DD} =9 V		50	130	Αu
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600 V			10	E
I _{PDD}	Low-Side Dynamic Operating Supply Current			0.8	O	mA
High-Sic	le Supply Characteristics (V _B -V _S)			CV	1	
VBS _{UV+}	V _{BS} Supply Under-Voltage Negative-Going Threshold	V _B -\ Inc. sir	7.7	9.2	10.7	V
VBS _{UV-}	V _{BS} Supply Under-Voltage Negative-Going Thresho	v _B creasing	7.1	8.3	10.1	V
VBS _{UVH}	V _{BS} Supply Under-Voltage Lockout Hysterer	N P	~6	0.6	0/	V
I_{QBS}	High-Side Quiescent Supply Current	OF O	03	50	130	μA
I _{PBS}	High-Side Dynamic Operating Su, Cur, t	ND R	10	400	800	μA
Oscillato	or Characteristics	(00)	2//-	•		
f _{osc1}	Oscillation Freo 1	R _T = 50 kΩ, C _T =330 pF	18	20	22	kHz
f _{osc2}	Oscillation Fremency 2	R =1 k Ω , C _T =1 nF	210	250	290	kHz
D	Duty velo	Running Mode	47.5	49.0		%
V _{RC} T	U, er Thresh .d Voltage of RCT	Running Mode		V_{DD}		V
RCT-	Threshold Voltage of RCT	Running Mode		V _{DD} /4		V
V _{1.}	ogic "1" Input Voltage of RCT	Running Mode		3/4 V _{DD}		٧
V _{IL}	Logic "0" Input Voltage of RC7	Running Mode			3/5 V _{DD}	٧
Cto	Dead-Time	R _{DT} =100 kΩ	500	600	700	ns
t _{DMIN}	Minimum Dead-Time	V _{DT/SD} =V _{DD}	300	400	500	ns
Output (Characteristics		3.5			7
I _{O+}	Output High, Short-Circuit Pulse Current ⁽³⁾	PW≤10 μs		350		mA
I _{O-}	Output Low, Short-Circuit Pulse Current ⁽³⁾	PW≤10 μs		650		mA
Vs	Allowable Negative V_S Pin voltage for Input Signal (V_{RCT}) Propagation to HO			-9.8	-7.0	٧

Continued on the following page...

Electrical Characteristics (Continued)


 V_{BIAS} (V_{DD} , V_{B} - V_{S})=14.0 V, C_{L} =1 nF, R_{T} =50 k Ω and C_{T} =330 pF and T_{A} =25°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Output Cha	aracteristics					
t _{on}	Turn-On Propagation Time	V _{DD} =V _{BS} =14 V, V _{DT/SD} =V _{DD} , V _{RCT} =4 V~V _{DD} , f _{OSC} =20 kHz		550		ns
t _{OFF}	Turn-Off Propagation Time	V _{DD} =V _{BS} =14 V, V _{DT/SD} =V _{DD} , V _{RCT} =4 V~V _{DD} , f _{OSC} =20 kHz		160		ns
t_R	Turn-On Rising Time	C _L =1000 pF		50	120	ns
t _F	Turn-Off Falling Time	C _L =1000 pF			70	ns
Protection	Characteristics					15
/SD+	Shutdown "1" Input Voltage		\			V
/SD-	Shutdown "0" Input Voltage				M	V
I _{SD}	Shutdown Current	V _{DT/SD} =0 After Running I de		250		μA
t _{SD}	Shutdown Propagation Delay			180		ns

Note:

3. These parameters, although guaranteed, is not 1 tested orcuction.

Switching Definitions

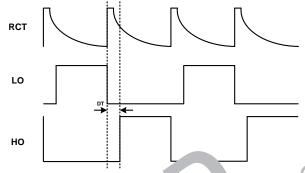
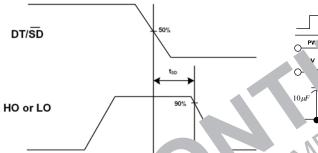



Figure 7. Test Circuit for Self-Oscillation Method

Figure 8. Basic O' ating Vavef ms of self-Cicil.

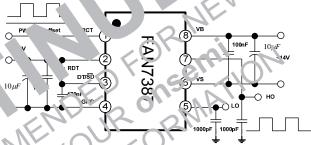


Figure 9. Shutch Doy Defi tion

Figure 10. Test Circuit for Forced-Oscillation Method
Using External Signal

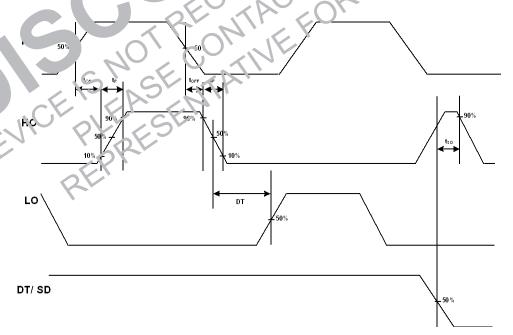
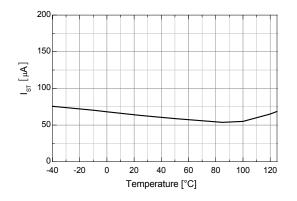



Figure 11. Basic Operation Waveforms of Forced-oscillation Method Using External Signal

Typical Performance Characteristics

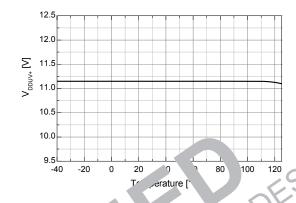
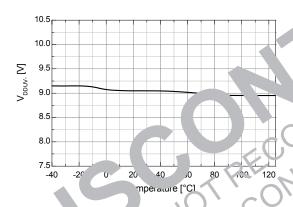
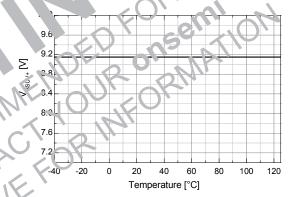
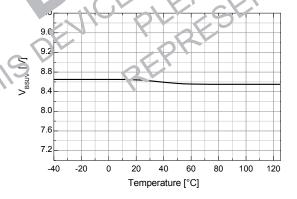




Figure 12. Startup Current vs. Temperature



່າງປາ. 14. ພວ UVI O- vs. Temperature

Figure 15. V_{BS} UVLO+ vs. Temperature

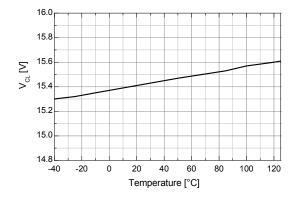


Figure 16. V_{BS} UVLO- vs. Temperature

Figure 17. V_{CL} vs. Temperature

Typical Performance Characteristics (Continued)



Figure 18. I_{PDD} vs. Temperature

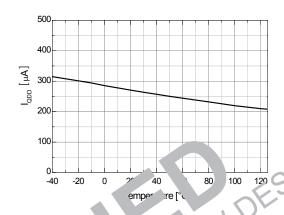
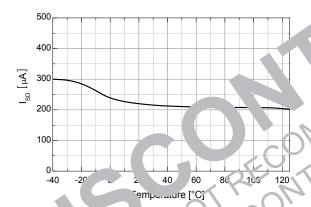



Figure I_{QL} v remporatore

່າgu J. I_{SP} vs. T: mperລເure

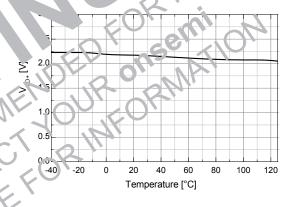


Figure 21. V_{SD}+ vs. Temperature

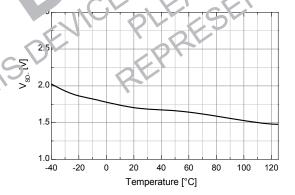


Figure 22. V_{SD}- vs. Temperature

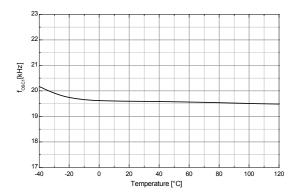
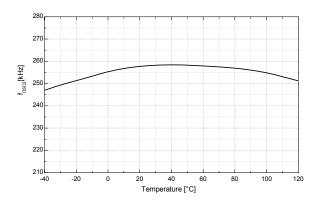



Figure 23. Operating Frequency 1 vs. Temperature

Typical Performance Characteristics (Continued)

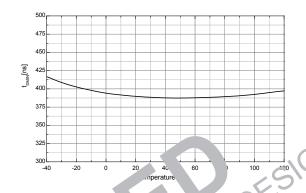
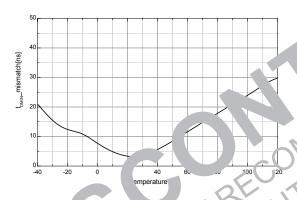



Figure 24. Operating Frequency 2 vs. Temperature

Figure 5. t_D vs emperature

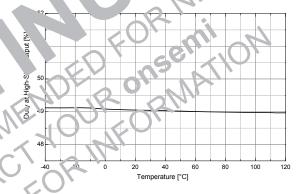
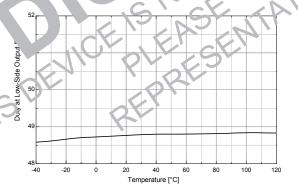



Figure ?6. Pe Nusinatch vs. Temperature

Figure 27. High-Side Duty Ratio vs. Temperature

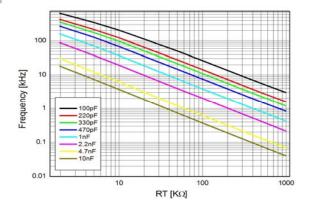


Figure 28. Low-Side Duty Ratio vs. Temperature

Figure 29. Frequency vs. RT

Functional Description

1. Under-Voltage Lockout (UVLO) Function

FAN7387 has a UVLO circuit for a low-side and high-side block. When V_{DD} reaches to the VDD $_{UV}+$, the UVLO circuit is released and the FAN7387 operates normally. At UVLO condition, the FAN7387 has a low supply current of less than 130 $\mu A.$ Once UVLO is released, FAN7387 operates normally until V_{DD} goes below VDD $_{UV}-$, the UVLO hysteresis.

FAN7387 also has a high-side gate driver. The supply for the high-side driver is applied between V_B and V_S . To prevent malfunction at low supply voltage between V_B and V_S , FAN7387 provides an additional UVLO circuit. If $V_B\text{-}V_S$ is under VBS $_{\text{UV}}\text{+}$, the driver holds LOW state to turn off the high-side switch. Once the voltage of $V_B\text{-}V_S$ is higher than VBS $_{\text{UVH}}$, after $V_B\text{-}V_S$ exceeds VBS $_{\text{UV}}\text{-}$, the operation of driver resumes.

2. Oscillator

The running frequency is determined by an external timing resistor (R_T) and timing capacitor (C_T). The charge time of capacitor C_T from 1/4 V_{DD} to V_{DD} determines the running frequency of LO and HO gate driver output. Figure 30 shows connection configuration

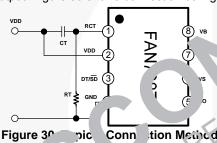


Figure 31 show the fall waveforms of RCT, LC, and HO. From a circuit a lysis, the discharging time of RCT giv by a uon 1:

$$V_{h} = V_{D_{i}} \langle In_{i} \frac{-t}{R_{t} \langle C_{i}} \rangle$$
 (1)

Equation 1 enables calculation of discharging time, t, from V_{DD} to 1/4 V_{DD} by substituting $V_{PCT(t)}$ with 1/4 V_{DD} .

$$t = 1.38 \times R_t \times C_t \tag{2}$$

The running frequency of IC is determined by 1/T and is approximately given as:

$$f_{\text{running}} = \frac{1}{T} = \frac{1}{2(t + T_{fix})}$$
RCT
LO
HO
HO
$$\frac{t_{\text{fix}}}{t_{\text{fix}}}$$

Figure 31. Typical Waveforms of RCT,LO and HO

where, t is the discharging time of the RCT voltage and $t_{\rm fix}$ is constant value about 450 ns of IC.

3. Programming Dead-Time Control / Shutdown

A multi-function pin controls dead-time using an external resistor (R_{DT}) and protects abnormal condition using an external switch. This pin should be connected to an external capacitor to maintain stable operation.

If the voltage of DT/SD is decreased under 1 V by an external switch, such as the TR or MOSFET, the FAN7387 enters shutdown mode. In this mode, the FAN7387 doesn't have any output signal.

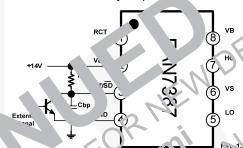


Figure 32. External Shotcown Circuit

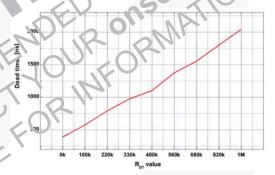


Figure 33. Adjustable Dead Time

4. Gate Driver Operation

The FAN7387 has a two operating modes. One is the self-oscillation mode by using external timing resistor (R_T) and external timing capacitor (C_T) and the other is the forced oscillation mode by external PWM signal comes from U-com and the other devices.

Figure 33 shows operation of the IC using an external PWM circuit with additional resistors (R1 and R2) for internal limitation of the IC. The input signal range from an external circuit must be within 3/5 $V_{\rm DD}$ and 3/4 $V_{\rm DD}$. The external signal produces the HO and LO output and HO signal is in-phase with the external input signal.

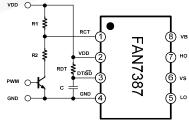


Figure 34. Gate Driver Using External PWM Signal

Physical Dimensions

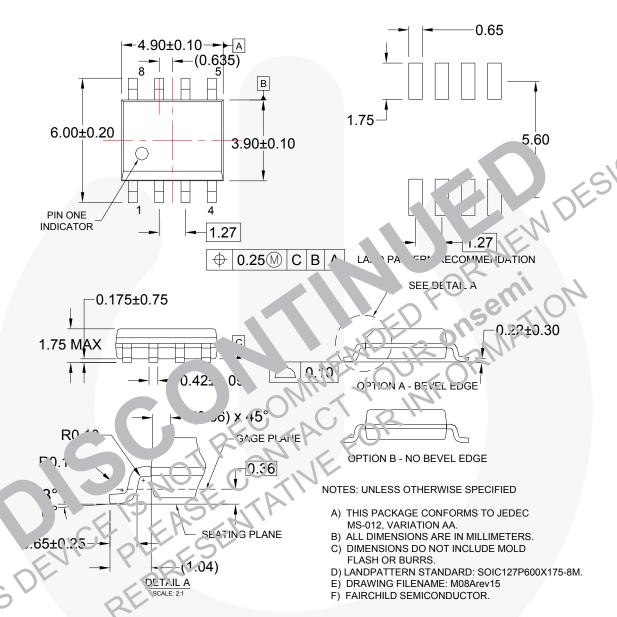


Figure 35. 8-Lead Small Outline Package (SOP)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/dwg/M0/M08A.pdf.

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower^{TI} AX-CAP BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT** CTI TM Current Transfer Logic™ DEUXPEED!

Dual Cool™ EcoSPARK® EfficientMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™

F-PFST FRFET®

Global Power Resources GreenBridge™ Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX** ISOPLANAR™

Making Small Speakers Sound Louder

and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MicroPak2™ MillerDrive™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR® PowerTrench® PowerXS™ Programmable Active Droop™

QFET QSTM Quiet Series™ RapidConfigure™

OTM Saving our world, 1mW/W/kW at a tir →™

Signal/Wise** SmartMax™ SMART START™ Solutions for Your Succe. SPM®

STEALTH™ SuperFET[®] Super OTM-3 Supe per:

reMc ® Syı ET Sync ckTi

Semiconductor

TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[©] TINYOPTO** TinyPower™ Ti~~□\/\/M™ TranSic

riFault te ct™ "UEC REN

Ulca FRFET™ UNIFETW VCXTM Visua[™]Max™ Vnita nePlus™ 加童"

* Trademarks of System General Corporation, used under licen. by Fairca

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE TOTAL AKE BESIMTHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIR? LIDE NO. SSUME ANY L'1810 T. ARISING OUT OF THE APPLICE TION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHE LOES IT. WE NY LICENS L'UNE ET ITS PATENT (16HTS), CR. 1, L'ERIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TI. 18 OF FA. HILLS WORLD WISE FERMS AND CONDITIONS, SESCIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODU

LIFE SUPPORT POLICY

FAIRCHILD'S PRODU ARE T AUTH RIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTY APPROVAL FAIR HILD SEMICONDUCTOR CORPORATION.

- 1. Life sukent devices or settlems are device; or systems which, (a) are order surreal ant into the usey or (h) support or sur air, and that the usey or (h) support or sur air, and the use provided in the labeling, can be reason by expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANT. ATERFE TING FOLICY

Fairchilu Serricon, lucior Corporation se nt-Counterieung Floicy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildserri.com, under Sales Support.

Countere thing of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Our omers who inadvertently nurchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed and lications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the pm/reration of counterfeit part. Fire illa strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data, supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 168

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative